• Title/Summary/Keyword: IEM

Search Result 89, Processing Time 0.026 seconds

Estimation of Fundamental Frequency Using an Instantaneous Frequency Based on the Symmetric Higher Order Differential Energy Operator (대칭구조를 갖는 일반적인 고차의 미분 에너지함수를 기반한 순간주파수를 이용한 음성의 기본주파수 추정)

  • Iem, Byeong-Gwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2374-2379
    • /
    • 2011
  • The fundamental frequency of the voiced speech is estimated using the instantaneous frequency based on the symmetric higher order differential energy operator. The instantaneous frequency based on the symmetric higher order energy operator shows better frequency estimation result since it is aligned to the time instance of the signal. The speech is pre-processed by a lowpass filter to remove higher frequency components. Then, it is processed by the instantaneous frequency to obtain the fundamental frequency estimates. The symmetric higher order energy operator has been used as an indicator to determine the voiced/unvoiced speech. The fundamental frequency estimates are further processed by a moving average filter to obtain the monotonically changed estimates. The obtained fundamental frequency estimates have been compared with the spectrogram of the speech to confirm its accuracy.

Formulation of New Hyperbolic Time-shift Covariant Time-frequency Symbols and Its Applications

  • Iem, Byeong-Gwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1E
    • /
    • pp.26-32
    • /
    • 2003
  • We propose new time-frequency (TF) tools for analyzing linear time-varying (LTV) systems and nonstationary random processes showing hyperbolic TF structure. Obtained through hyperbolic warping the narrowband Weyl symbol (WS) and spreading function (SF) in frequency, the new TF tools are useful for analyzing LTV systems and random processes characterized by hyperbolic time shifts. This new TF symbol, called the hyperbolic WS, satisfies the hyperbolic time-shift covariance and scale covariance properties, and is useful in wideband signal analysis. Using the new, hyperbolic time-shift covariant WS and 2-D TF kernels, we provide a formulation for the hyperbolic time-shift covariant TF symbols, which are 2-D smoothed versions of the hyperbolic WS. We also propose a new interpretation of linear signal transformations as weighted superposition of hyperbolic time shifted and scale changed versions of the signal. Application examples in signal analysis and detection demonstrate the advantages of our new results.

A Low Bit Rate Speech Coder Based on the Inflection Point Detection

  • Iem, Byeong-Gwan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.300-304
    • /
    • 2015
  • A low bit rate speech coder based on the non-uniform sampling technique is proposed. The non-uniform sampling technique is based on the detection of inflection points (IP). A speech block is processed by the IP detector, and the detected IP pattern is compared with entries of the IP database. The address of the closest member of the database is transmitted with the energy of the speech block. In the receiver, the decoder reconstructs the speech block using the received address and the energy information of the block. As results, the coder shows fixed data rate contrary to the existing speech coders based on the non-uniform sampling. Through computer simulation, the usefulness of the proposed technique is shown. The SNR performance of the proposed method is approximately 5.27 dB with the data rate of 1.5 kbps.

A Fixed Rate Speech Coder Based on the Filter Bank Method and the Inflection Point Detection

  • Iem, Byeong-Gwan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.276-280
    • /
    • 2016
  • A fixed rate speech coder based on the filter bank and the non-uniform sampling technique is proposed. The non-uniform sampling is achieved by the detection of inflection points (IPs). A speech block is band passed by the filter bank, and the subband signals are processed by the IP detector, and the detected IP patterns are compared with entries of the IP database. For each subband signal, the address of the closest member of the database and the energy of the IP pattern are transmitted through channel. In the receiver, the decoder recovers the subband signals using the received addresses and the energy information, and reconstructs the speech via the filter bank summation. As results, the coder shows fixed data rate contrary to the existing speech coders based on the non-uniform sampling. Through computer simulation, the usefulness of the proposed technique is confirmed. The signal-to-noise ratio (SNR) performance of the proposed method is comparable to that of the uniform sampled pulse code modulation (PCM) below 20 kbps data rate.

Dynamic Analysis of Tunnel by Using Infinite Element (무한요소를 이용한 터널의 동적해석)

  • 양신추;이희현;변재양
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.145-152
    • /
    • 1994
  • The dynamic interaction between tunnel structures and their surrounding soil medium due to impulse loading is investigated by a hybrid IEM/FEM methodology. A dynamic infinite element is developed for the efficient descretization of the far-field region of the unbounded soil medium. The shape functions of the infinite element are constructed based on the far-field solutions which are obtained by solving the 2-D elastic wave problems. Also they are devised to obtain a reasonable result over all frequency range. Numerical analysis is carried out to examine the response of the tunnel subjected to simple rectangular impulse. It is indicated that the results by the present method are in good accord with those by the boundary and finite element coupling method.

  • PDF

Numerical Study on Turbulent Nonpremixed Pilot Stabilized Flame using the Transported Probability Density Function Model (수송확률밀도함수 모델을 이용한 난류비예혼합 파일럿 안정화 화염장 해석)

  • Lee, Jeong-Won;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.4
    • /
    • pp.15-21
    • /
    • 2010
  • The transported probability density function(PDF) model has been applied to simulate the turbulent nonpremixed piloted jet flame. To realistically account for the mixture fraction PDF informations on the turbulent non-premixed jet flame, the present Lagrangian PDF transport approach is based on the joint velocity-composition-turbulence frequency PDF formulation. The fluctuating velocity of stochastic fields is modeled by simplified Langevin model(SLM), turbulence frequency of stochastic fields is modeled by Jayesh-Pope model and effects of molecular diffusion are represented by the interaction by exchange with the mean (IEM) mixing model. To validate the present approach, the numerical results obtained by the joint velocity-composition-turbulence frequency PDF model are compared with experimental data in terms of the unconditional and conditional means of mixture fraction, temperature and species and PDFs.

Investigation on Electric Field Optimization Algorithm of Spacer in Gas Insulated System (가스절연 원통형 관로 내의 스페이서 전계 최적화 알고리즘에 관한 연구)

  • Kim, Ung-Sik;Min, Seok-Won
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.3
    • /
    • pp.115-120
    • /
    • 2002
  • This Paper describes an algorithm for the design of axi-symmetrical spacer under specified field conditions. The electric field alas been calculated by combination method of Integral Equation Method(IEM) and Charge Simulation Method(CSM). The contour of spacer is represented with NURB(Non-Uniform Rational B-spline) curve of which effectiveness has been proved. This algorithm introduces a design process in the aspect of electrical field, when a spacer in airtight cylinder is designed. Also various field conditions for obtaining optical shapes have been proposed. Due to the algorithm, the entire process shows a stable convergence. Both tangential and total electrical field are taken into consideration as specified field criteria.

Ionic Polymer-Metal Composite Actuator with Increased Air-Operating stability by Using Ionic Liquids

  • Lee, Jang-Yeol;Han, Man-Jae;Lee, Sung-Won;Park, Sun-Jin;Yoon, Bye-Ri;Jho, Jae-Young
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.246-246
    • /
    • 2006
  • Ionic polymer-metal composite (IPMC) soaked with various ionic liquids was prepared by using polystyrene sulfonic acid-grafted poly(vinylidene fluoride-co-hexafluoropropylene) as ion-exchange membrane (IEM). The prepared IPMCs were effectively deformed three times larger and actuated for 300 times longer than those of Nafion with water at the same applied conditions. The experimental results indicated than the increase in the bending capability can be caused by the increase in the improved properties of the IEMs and ionic liquids such as uptake content and ionic conductivity. And air-operating stability of the IPMCs is appreciably governed by various physical and electrochemical properties of soaked solvents in IEMs.

  • PDF

Unstructured Moving-Mesh Hydrodynamic Simulation

  • Yun, Kiyun;Kim, Juhan;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.65.2-65.2
    • /
    • 2014
  • We present a new hydrodynamic simulation code based on the Voronoi tessellation for estimating the density precisely. The code employs both of Lagrangian and Eulerian description by adopting the movable mesh scheme, which is superior to the conventional SPH (smoothed particle hydrodynamics) and AMR (adaptive mesh refinement) schemes. The code first generates unstructured meshes by the Voronoi tessellation at every time step, and then solves the Riemann problem for all surfaces of each Voronoi cell so as to update the hydrodynamic states as well as to move current meshes. Besides, the IEM (incremental expanding method) is devised to compute the Voronoi tessellation to desired degree of speed, thereby the CPU time is turned out to be just proportional to the number of particles, i.e., O(N). We discuss the applications of our code in the context of cosmological simulations as well as numerical experiments for galaxy formation.

  • PDF

Generalization of the Spreading Function and Weyl Symbol for Time-Frequency Analysis of Linear Time-Varying Systems

  • Iem, Byeong-gwan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.7
    • /
    • pp.628-632
    • /
    • 2001
  • We propose time-frequency (TF) tools for analyzing linear time-varying (LTV) systems and nonstationary random processes. Obtained warping the narrowband Weyl symbol (WS) and spreading function (SF), the new TF tools are useful for analyzing LTV systems and random processes characterized by generalized frequency shifts, This new Weyl symbol (WS) is useful in wideband signal analysis. We also propose WS an tools for analyzing systems which produce dispersive frequency shifts on the signal. We obtain these generalized, frequency-shift covariant WS by warping conventional, narrowband WS. Using the new, generalized WS, we provide a formulation for the Weyl correspondence for linear systems with instantaneous of linear signal transformation as weighted superpositions of non-linear frequency shifts on the signal. Application examples in signal and detection demonstrate the advantages of our new results.

  • PDF