• 제목/요약/키워드: I-semiring

검색결과 13건 처리시간 0.016초

One-sided Prime Ideals in Semirings

  • Shabir, Muhammad;Iqbal, Muhammad Sohail
    • Kyungpook Mathematical Journal
    • /
    • 제47권4호
    • /
    • pp.473-480
    • /
    • 2007
  • In this paper we define prime right ideals of semirings and prove that if every right ideal of a semiring R is prime then R is weakly regular. We also prove that if the set of right ideals of R is totally ordered then every right ideal of R is prime if and only if R is right weakly regular. Moreover in this paper we also define prime subsemimodule (generalizing the concept of prime right ideals) of an R-semimodule. We prove that if a subsemimodule K of an R-semimodule M is prime then $A_K(M)$ is also a prime ideal of R.

  • PDF

Column ranks and their preservers of general boolean matrices

  • Song, Seok-Zun;Lee, Sang-Gu
    • 대한수학회지
    • /
    • 제32권3호
    • /
    • pp.531-540
    • /
    • 1995
  • There is much literature on the study of matrices over a finite Boolean algebra. But many results in Boolean matrix theory are stated only for binary Boolean matrices. This is due in part to a semiring isomorphism between the matrices over the Boolean algebra of subsets of a k element set and the k tuples of binary Boolean matrices. This isomorphism allows many questions concerning matrices over an arbitrary finite Boolean algebra to be answered using the binary Boolean case. However there are interesting results about the general (i.e. nonbinary) Boolean matrices that have not been mentioned and they differ somwhat from the binary case.

  • PDF

A WEAKER NOTION OF THE FINITE FACTORIZATION PROPERTY

  • Henry Jiang;Shihan Kanungo;Hwisoo Kim
    • 대한수학회논문집
    • /
    • 제39권2호
    • /
    • pp.313-329
    • /
    • 2024
  • An (additive) commutative monoid is called atomic if every given non-invertible element can be written as a sum of atoms (i.e., irreducible elements), in which case, such a sum is called a factorization of the given element. The number of atoms (counting repetitions) in the corresponding sum is called the length of the factorization. Following Geroldinger and Zhong, we say that an atomic monoid M is a length-finite factorization monoid if each b ∈ M has only finitely many factorizations of any prescribed length. An additive submonoid of ℝ≥0 is called a positive monoid. Factorizations in positive monoids have been actively studied in recent years. The main purpose of this paper is to give a better understanding of the non-unique factorization phenomenon in positive monoids through the lens of the length-finite factorization property. To do so, we identify a large class of positive monoids which satisfy the length-finite factorization property. Then we compare the length-finite factorization property to the bounded and the finite factorization properties, which are two properties that have been systematically investigated for more than thirty years.