DOI QR코드

DOI QR Code

A WEAKER NOTION OF THE FINITE FACTORIZATION PROPERTY

  • Received : 2023.07.19
  • Accepted : 2024.02.26
  • Published : 2024.04.30

Abstract

An (additive) commutative monoid is called atomic if every given non-invertible element can be written as a sum of atoms (i.e., irreducible elements), in which case, such a sum is called a factorization of the given element. The number of atoms (counting repetitions) in the corresponding sum is called the length of the factorization. Following Geroldinger and Zhong, we say that an atomic monoid M is a length-finite factorization monoid if each b ∈ M has only finitely many factorizations of any prescribed length. An additive submonoid of ℝ≥0 is called a positive monoid. Factorizations in positive monoids have been actively studied in recent years. The main purpose of this paper is to give a better understanding of the non-unique factorization phenomenon in positive monoids through the lens of the length-finite factorization property. To do so, we identify a large class of positive monoids which satisfy the length-finite factorization property. Then we compare the length-finite factorization property to the bounded and the finite factorization properties, which are two properties that have been systematically investigated for more than thirty years.

Keywords

Acknowledgement

We are grateful to our mentors, Prof. Jim Coykendall and Dr. Felix Gotti, for proposing this project and for their guidance during the preparation of this project. While working on this paper, we were part of PRIMES-USA, a year-long math research program hosted by MIT. We would like to express our collective gratitude to the MIT PRIMES program for arranging such an engaging research experience.

References

  1. K. Ajran, J. Bringas, B. Li, E. Singer, and M. Tirador, Factorization in additive monoids of evaluation polynomial semirings, Comm. Algebra 51 (2023), no. 10, 4347-4362. https://doi.org/10.1080/00927872.2023.2208672
  2. D. D. Anderson, D. F. Anderson, and M. Zafrullah, Factorization in integral domains, J. Pure Appl. Algebra 69 (1990), no. 1, 1-19. https://doi.org/10.1016/0022-4049(90)90074-R
  3. D. F. Anderson and F. Gotti, Bounded and finite factorization domains, in Rings, Monoids and Module Theory, 7-57, Springer Proc. Math. Stat., 382, Springer, Singapore. https://doi.org/10.1007/978-981-16-8422-7_2
  4. N. R. Baeth, S. T. Chapman, and F. Gotti, Bi-atomic classes of positive semirings, Semi-group Forum 103 (2021), no. 1, 1-23. https://doi.org/10.1007/s00233-021-10189-8
  5. N. R. Baeth and F. Gotti, Factorizations in upper triangular matrices over information semialgebras, J. Algebra 562 (2020), 466-496. https://doi.org/10.1016/j.jalgebra.2020.06.031
  6. A. Baker, Transcendental Number Theory, second edition, Cambridge Mathematical Library, Cambridge Univ. Press, Cambridge, 1990.
  7. M. Bras-Amor'os, Increasingly enumerable submonoids of R: music theory as a unifying theme, Amer. Math. Monthly 127 (2020), no. 1, 33-44. https://doi.org/10.1080/00029890.2020.1674073
  8. M. Bras-Amor'os and M. Gotti, Atomicity and density of Puiseux monoids, Comm. Algebra 49 (2021), no. 4, 1560-1570. https://doi.org/10.1080/00927872.2020.1840574
  9. A. Bu, J. Vulakh, and A. Zhao, Length-factoriality and pure irreducibility, Commun. Algebra 51 (2023), no. 9, 3745-3755. https://doi.org/10.1080/00927872.2023.2187629
  10. S. T. Chapman and J. Coykendall, Half-factorial domains, a survey, in Non-Noetherian Commutative Ring Theory, 97-115, Math. Appl., 520, Kluwer Acad. Publ., Dordrecht, Springer, Boston 2020. https://doi.org/10.1007/978-1-4757-3180-4_5
  11. S. T. Chapman, J. Coykendall, F. Gotti, and W. W. Smith, Length-factoriality in commutative monoids and integral domains, J. Algebra 578 (2021), 186-212. https://doi.org/10.1016/j.jalgebra.2021.03.010
  12. S. T. Chapman and M. Gotti, Atomicity of positive monoids, submitted.
  13. S. T. Chapman, F. Gotti, and M. Gotti, Factorization invariants of Puiseux monoids generated by geometric sequences, Comm. Algebra 48 (2020), no. 1, 380-396. https://doi.org/10.1080/00927872.2019.1646269
  14. P. M. Cohn, Bezout rings and their subrings, Math. Proc. Cambridge Philos. Soc. 64 (1968), no. 2, 251-264. https://doi.org/10.1017/s0305004100042791
  15. J. Correa-Morris and F. Gotti, On the additive structure of algebraic valuations of polynomial semirings, J. Pure Appl. Algebra 226 (2022), no. 11, Paper No. 107104, 20 pp. https://doi.org/10.1016/j.jpaa.2022.107104
  16. J. Coykendall, D. E. Dobbs, and B. Mullins, On integral domains with no atoms, Comm. Algebra 27 (1999), no. 12, 5813-5831. https://doi.org/10.1080/00927879908826792
  17. J. Coykendall and W. W. Smith, On unique factorization domains, J. Algebra 332 (2011), no. 1, 62-70. https://doi.org/10.1016/j.jalgebra.2010.10.024
  18. W. Gao, C. Liu, S. Tringali, and Q. Zhong, On half-factoriality of transfer Krull monoids, Comm. Algebra 49 (2021), no. 1, 409-420. https://doi.org/10.1080/00927872.2020.1800720
  19. A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations, Pure and Applied Mathematics, 278, Chapman & Hall/CRC, Boca Raton, FL, 2006. https://doi.org/10.1201/9781420003208
  20. A. Geroldinger and Q. Zhong, A characterization of length-factorial Krull monoids, New York J. Math. 27 (2021), 1347-1374.
  21. J. S. Golan, Semirings and their Applications, Kluwer Acad. Publ., Dordrecht, 1999. https://doi.org/10.1007/978-94-015-9333-5
  22. F. Gotti, Increasing positive monoids of ordered fields are FF-monoids, J. Algebra 518 (2019), 40-56. https://doi.org/10.1016/j.jalgebra.2018.10.010
  23. F. Gotti, On semigroup algebras with rational exponents, Comm. Algebra 50 (2022), no. 1, 3-18. https://doi.org/10.1080/00927872.2021.1949018
  24. F. Gotti and M. Gotti, Atomicity and boundedness of monotone Puiseux monoids, Semi-group Forum 96 (2018), no. 3, 536-552. https://doi.org/10.1007/s00233-017-9899-9
  25. F. Gotti and M. Gotti, On the molecules of numerical semigroups, Puiseux monoids, and Puiseux algebras, in Numerical Semigroups, 141-161, Springer INdAM Ser., 40, Springer, Cham, 2020. https://doi.org/10.1007/978-3-030-40822-0_10
  26. F. Gotti and B. Li, Atomic semigroup rings and the ascending chain condition on principal ideals, Proc. Amer. Math. Soc. 151 (2023), no. 6, 2291-2302. https://doi.org/10.1090/proc/16295
  27. F. Gotti and H. Polo, On the arithmetic of polynomial semidomains, Forum Math. 35 (2023), no. 5, 1179-1197. https://doi.org/10.1515/forum-2022-0091
  28. F. Gotti and H. Polo, On the subatomicity of polynomial semidomains, in Algebraic, Number Theoretic, and Topological Aspects of Ring Theory, 197-212, Springer, Cham, 2023. https://doi.org/10.1007/978-3-031-28847-0_13
  29. F. Gotti and J. Vulakh, On the atomic structure of torsion-free monoids, Semigroup Forum 107 (2023), no. 2, 402-423. https://doi.org/10.1007/s00233-023-10385-8
  30. A. Grams, Atomic rings and the ascending chain condition for principal ideals, Proc. Cambridge Philos. Soc. 75 (1974) 321-329. https://doi.org/10.1017/S0305004100048532
  31. F. Halter-Koch, Finiteness theorems for factorizations, Semigroup Forum 44 (1992), no. 1, 112-117. https://doi.org/10.1007/BF02574329
  32. N. Jiang, B. Li, and S. Zhu, On the primality and elasticity of algebraic valuations of cyclic free semirings, Internat. J. Algebra Comput. 33 (2023), no. 2, 197-210. https://doi.org/10.1142/S021819672350011X
  33. H. Polo, A characterization of finite factorization positive monoids, Commun. Korean Math. Soc. 37 (2022), no. 3, 669-679. https://doi.org/10.4134/CKMS.c210270
  34. A. Zaks, Half factorial domains, Bull. Amer. Math. Soc. 82 (1976), no. 5, 721-723. https://doi.org/10.1090/S0002-9904-1976-14130-4
  35. S. Zhu, Factorizations in evaluation monoids of Laurent semirings, Comm. Algebra 50 (2022), no. 6, 2719-2730. https://doi.org/10.1080/00927872.2021.2018449