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COLUMN RANKS AND THEIR PRESERVERS
OF GENERAL BOOLEAN MATRICES

SEOK-ZUN SONG AND SANG -GU LEE

1. Introduction

There is much literature on the study of matrices over a finite
Boolean algebra. But many results in Boolean matrix theory are stated
only for binary Boolean matrices. This is due in part to a semiring iso-
morphism between the matrices over the Boolean algebra of subsets
of a k element set and the k tuples of binary Boolean matrices. This
isomorphism allows many questions concerning matrices over an arbi-
trary finite Boolean algebra to be answered using the binary Boolean
case. However there are interesting results about the general (i.e. non-
binary) Boolean matrices that have not been mentioned and they differ
somwhat from the binary case.

In many instances, the extension of results to the general case is
not immediately obvious and an explicit version of the above men-
tioned isomorphism was not well known. In [4], Kirkland and Pullman
gave a way to derive results in the general Boolean algebra case via
the isomorphism from the binary Boolean algebra case by means of a
canonical form derived from the isomorphism.

In [2], Beasley and Pullman compared semiring rank and column
rank of the matrices over several semirings. The difference between
semiring rank and column rank motivated Beasley and Song to in-
vestigate of the column rank preservers of matrices over nonnegative
integers [3] and over the binary Boolean algebra [5].

In this paper, we will show the extent of the difference between
semiring rank and column rank of matrices over a general Boolean
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algebra and we also obtain characterizations of the linear operators
that preserve column ranks of general Boolean matrices.

Let B be the Boolean algebra of subsets of a k element set St and
01, 02, ... , 0k denote the singleton subsets of Sx. We write + for
union and denote intersection by juxtaposition; 0 denotes the null set
and 1 the set Si. Under these two operations, B is a commutative,
antinegative semiring (that is, only 0 has an additive inverse); all of its
elements, except 0 and 1, are zero-divisors. Let M., ».(B) denote the
set of all m x n matrices with entries in B. The usual definitions for
adding and multiplying matrices apply to Boolean matrices as well.

For each m x n matrix A over B, the p-th constituent [4] of A, Ay, is
the m x n(0, 1)-matrix whose (s,t)-th entry is 1 if and only if a,, D Ty
Via the constituents, A can be written uniquely as 3 0,4, which is
called the canonical form of A.

It follows from the uniqueness of the decomposition, and the fact
that the singletons are mutually orthogonal idempotents, that for all
m X n matrices A, all n x » matrices B and C, and all a € B,

(a) (AB), = A, B,, (b) (B + Clp=Bp+Cp, (¢) (ad)y = a4,
for all 1 < p <k.

2. Boolean rank versus Boolean cloumn rank

The Boolean rank, b(A), of a nonzero A € M, »(B) is defined as
the least index r such that A = BC for some B € M,, .(B) and C €
M, ».(B). The rank of zero matrix is zero; in the case that B = B; =
{0,1}, we refer to b(A) as the binary Boolean rank, and denote it by
bi(A).

For a binary Boolean matrix A, we have b(A) = b;(A) by definition.

If V is nonempty subset of M, 1(B) that is closed under addition
and multiplication by scalars, then V is called a vector space over B.
The concepts of "subspace” and of "generating sets” are defined so as
to coincide with familar definitions when B is a field. We’ll use the
notation < F' > to denote the subspace generated by the subset F of
V. As with fields, a basis for a vector space V is a generating subset of
least cardinality. That cardinality is the dimension, dim(V), of V.

Since B, is canonically identified with the subsemiring {0,1} of B, a
binary Boolean matrix can be considered as a matrix over both B and

B,.
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The Boolean column rank, c(A), of A € M, ,(B) is the dimension of
the space < 4 > generated by the columns of A. In the binary Boolean
algebra, we denote it by ¢;(A) for A € M,, (B,).

(2.1) It is known [2] that for all m x n matrices A over B,0 < b(A) <
c¢(A) < n.

(2.2) For any p x ¢ matrix A over B, the Boolean rank of [g g]

is b(A4) and its Boolean column rank is c(A).
(2.3) The Boolean rank of a matrix is the maximum of the binary
Boolean ranks of its constituents. ([4])
Let us start with the relationship between ¢(A) and ¢;(A4) for a
binary Boolean matrix A when considered in B and B;.

LEMMA 2.1. For any binary Boolean matrix A, we have c¢(A) =
Cl(‘4)-

Proof. . Since B; can be considered as a subsemiring of B, we have
c(A) < e1(A). Conversely, if ¢(A) = r, then there exists a basis B =

{x1,X2,...,%,} of the column space of A such that each x; is a linear
combination of the columns of A over B. Then the p-th constituents
(X1)p,(X2)ps ... ,(X,), can generate all columns of A, over B,. Hence

c1(A,) <r. But 4 = A, for all p, so ¢;(A) <r =c(A).§
Let p1 (B, m, n) be the largest integer 4 such that for all A € M, »(B),
b(A) = c(A) if b(A4) < +.
(2.4) It follows from definition of i and (2.2) that if ¢(4) > b(A) for
some p X ¢ matrix A, then u(B,m,n) < b(A) for all m > p and
n >q.
Beasley and Pullman determined the value of x on By in (2] as

follows;
LEMMA 2.2, ([2])
1 ifman(m,n) =1

p(By,mn)=< 3 ifm>3andn=3

2  otherwise.

Now we determine the value yi for a nonbinary Boolean algebra B.
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LEMMA 2.3. IfB is any Boolean algebra and m > 3 and n > 3,

p(B,m,n) <2.

0110
A=1{1 0 0 1].
1100

Then ¢(A) = ¢;(A) by Lemma 2.1. Since the four columns of A con-
situte a basis for the column space of A over By,c1({A) = 4. Thus
c(A) = 4. But 5(A) < min{m,n} = 3. The result follows from the
property (2.4).9

LEMMA 2.4. If (A) =r and ) 0,4, is the canonical form of A €
M n(B) then max{c;(4,) |1 <p<k}<r

Proof. Let

Proof. . Assume that ¢(A)=r. Then there exists some basis
{x1,...,%X,} for the column space of A. Then the pth constituents
(X1)p,...,{Xr)p can generate all columns of A, over B;. Therefore
c1(Ap) <rfor all p.q

We remark that the inequality in Lemma 2.4 may be strict for r > 1
as shown in Example 2.1 below.

EXAMPLE 2.1. Let

_ gy 0Oy 1
A= [0 1 1}

be a matrix over the nonbinary Boolean algebra of the k element set
Sk, where o, is a singleton subset of Si. Then ¢(A) = 3 by the proof of

Theorem 2.1 below. But ¢1(4;) = ¢ [(1) i 1]) = 2 and ¢1(4,) =

0 0 1
=2 =9 -
cl([o 1 1]) forallp=2,3,.... k.q
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LEMMA 2.5. If B is any Boolean algebra and m > 1 and n > 1,
then u(B,m,n) > 1.

Proof. . If ¢(A) =1 then b(A) = 1 by the property (2.1). f b(A) =
1, then A can be factored as xa' where a’ = [q;,... ,a,] € M, .(B)
and x € M, 1(B). Thus the column space of A can be generated by one
column vector x. So ¢(4) <1 = b(A). On the other hand b(A) < ¢(A)

by (2.1).4
THEOREM 2.1. For a nonbinary Boolean algebra B,

2 f2=n<m

1 otherwise

(B = {

Proof. By Lemma 2.5, u(B, m, n) 2> 1 for all positive integers m and
n. Let 0; € B be a singleton subset of S;. Consider the matrix

_{o1 o1 1
N

Then the column space of A is

_ g} o1 o 1
V——{x[o]+y[al] +~»[1J+w[1]|z,w€]3, and z,y €< 0y >}.

Let © be any subset of V generating V. Let

= 7]
Ifa¢gQ, then

a= [m«l—y—f—w

Y+ w } for some w € B,z,y €< o) > .

Now 1 =y + w and y = 0 or 0y, so that w = 1 or 1 — o3(which is
the complement of o;). But then o, = z + y+w=1orl-o0y,a
contradiction, since o; # 1. Hence a € Q.

Let
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1
b= .
1

] for some z € B, z,y €< 01 > .

Ifb¢Q, then

+y+zoy
b=|"
T

Since ]l =y+2zandy=0oro;, we have z = 1 or 1 — 0,. But then
1l =z+4+y+ 20, = z01(< 01) or 01, a contradiction, since oy # 1.

Hence b € Q.
c= M

Let

Then ¢ ¢ Q would imply that 0 = y + z + w for some y, z and w, one of
which is nonzero, which is impossible. Hence {a, b, ¢} C Q. Therefore
c(A) = 3. But b(A4) < 2 by definition. Thus g (B,m,n) < 1 when
m 2> 2 and n > 3, by property (2.4). Hence u(B,m,n) =1 for m > 2
and n > 3 by Lemma 2.5. Evidently u(B,m,1) = 1 for all m > 1.
If 1 = m < n, then the fact that < z1,22,... ,2, >=< Y1 &; >
implies that u(B,1,n) = 1. If 2 = n < m, then ¢(A) = 2 whenever
b(A) = 2 by property (2.1). Thus u(B,m,2) = 2 for m > 2 by Lemma
2.5.4

3. Linear operators that preserve cloumn rank of the non-
binary Boolean matrices

In this section, we obtain the characterizations of the linear oper-
ators that preserve Boolean column rank of the nonbinary Boolean
matrices.

A linear operator T on M,,, »(B) is said to preserve Boolean column
rank if ¢(T(A)) = ¢(A) for all A € M,, ,(B). It preserves Boolean
column rank r if ¢(T(A)) = r whenever ¢(A)=r. For the terms Boolean
rank preserver and Boolean rank r preserver, they are defined similarly.

If T is a linear operator on M,, ,(B), for each 1 < p < k define its
p-th constituent, T, by T,(B) = (T(B)), for every B € M,, ,,(B,).
By the linearity of T, we have T(4) = 3 0,T,(A,) for any matrix
A e M, »(B).
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Since Mlp,,»(B) is a semiring, we can consider the invertible members
of its multiplicative monoid. The permutation matrices (obtained by
permuting the columns of I,,, the identity matrix) are all invertible.
Since 1 is the only invertible member of the multiplicative monoid of B,
the permutation matrices are the only invertible members of M., .(B).

LEMMA 3.1. The Boolean column rank of a Boolean matrix is un-
changed by pre- or post-multiplication by an invertible matrix.

Proof. This follows from the fact that an invertible matrix is just a
permutation matrix.q

LEMMA 3.2. Suppose T is a linear operator on M.,.B) KT
preserves Boolean column rank r, then each constituent T, preserves
Boolean column rank r on M,, . (By).

Proof. Assume that A € M., »(B1) is a binary Boolean matrix with
c1(A)=r. By Lemma 2.1, we have ¢(4) = r and c(0p,A) = r for each
p=1,..., k. Since T preserves Boolean column rank r, (T(o,A4))=r.
But

«(T(0pA)) = c(0,T(A)) = c(o, ZUiTi(Ai)) = c(0,T,(A))

for each p. Therefore c(o,T,(A)) =rforeach p =1, ..., k, and hence
ci(Tp(A4)) =rq

LEMMA 3.3. Suppose T is a linear operator on the m x n matrices
over B. If each constituent T, preserves binary Boolean rank r, then
T preserves Boolean rank r.

Proof. Let b(A) = r for A € M,, ,(B). Then there exists some
p such that b;(4,) = r and bi(4y) < rfor 1 < g < k by property
(2.3). Thus (T,(A,)) = r and bi(T,(Ay)) < rfor 1 < ¢ <k. Since
YT(A)) = max{d;(T,(4,)) |1 < p < k} by property (2.3), T preserves

Boolean rank r.
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Now we need the following definitions of linear operators on the
m x n matrices over B. For any fixed pair of invertible m x m and
n x n Boolean matrices U and V, the operator A — UAV is called a
congruence operator. Let o* denote the complement of o for each o in
B. For 1 < p < k, we define the p-th rotation operator, RP) on the
n x n matrices over B by

RP(A4) = 0,A! + 034,

where A;, is the transpose matrix of A4,. We see that R®) has the effect
of transposing 4, while leaving the remaining constituents unchanged.
Each rotation operator is linear on the n x n matrices over B and their
product is the transposition operator, R: A — Al

EXAMPLE 3.1. Let

0 0 0
A= |03 o7 1
0] 1 1

be a matrix over B. Then ¢(4) = 3 by Example 2.1 and property
(2.2). But RW(A) = A!, the transpose matrix of A, has Boolean
column rank 2. Consider B = A @ 0,,_3 ,—3 for n > 3. By property
(2.2), the rotation operator does not preserve Boolean column rank 3

on M, .(B).q

LEMMA 3.4. ([4]) If T is a linear operator on the m x n matrices
(m,n > 1) over a general Boolean algebra B, then the followings are
equivalent.

(1) T preserves Boolean ranks 1 and 2.
(2) T is in the group of operators generated by the congruence (if
m = n, also the rotation ) operators.

THEOREM 3.1. Suppose T is a linear operator on M, ,(B) for m >
3 and n > 1. Then the following are equivalent.

(1) T preserves Boolean column rank.
(2) T preserves Boolean column ranks 1, 2 and 3
(3) T is a congruence operator.
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Proof. Obviously (1) implies (2). Assume that T preserves Boolean
column ranks 1, 2 and 3. Then each constituent T, preserves binary
Boolean column ranks 1, 2 and 3 by Lemma 3.2. For A ¢ M, .(B),
Lemma 2.2 implies that b, (4) = c1(A)for b1(A4) < 2. Thus T}, preserves
binary Boolean ranks 1 and 2. Then T preserves Boolean ranks 1 and
2 by Lemma 3.3. So T is in the group of operators generated by the
congruence ( if m = n, also the rotation ) operators. But the rotation
operator does not preserve Boolean column rank 3 by Example 3.1.
Hence T is a congruence operator since T preserves Boolean column
rank 3. That is, (2) implies (3). Now, assume that T is a congruence
operator of the form T(A)=UAV, where U and V are invertible m x m
and n x n Boolean matrices respectively. Then T preserves Boolean
column rank by Lemma 3.1. Hence (3) implies (1). §

If m < 2, then the linear operators that preserve column rank on
M., »(B) are the same as the Boolean rank-preservers, which were char-
acterized in [4].

Thus we have characterizations of the linear operators that preserve
the Boolean column rank of general Boolean matrices.
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