• Title/Summary/Keyword: Hypoxia imaging

Search Result 28, Processing Time 0.029 seconds

Synthetic approaches toward [18F]Fluoromisonidazole as a hypoxia imaging maker

  • Kwon, Young-Do;Lim, Seok Tae;Jeong, Hwan-Jeong;Sohn, Myung-Hee;Kim, Hee-Kwon
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.1
    • /
    • pp.9-14
    • /
    • 2015
  • Hypoxia has been shown in many tumors because of a reduced oxygen condition. A useful approach to detect hypoxia is to use molecular imaging. Positron emission tomography (PET), one of the biomedical molecular imaging tools, is the most common non-invasive technique for providing information about physiological and biological events such as diseases. In order to use the PET technique for healthcare, promising molecular probes such as PET tracers required. [$^{18}F$]Fluoromisonidazole ([$^{18}F$]FMISO) is the most widely used in PET tracers for hypoxia. In this review, major developments of the synthetic method of [$^{18}F$]FMISO are discussed.

Imaging Hypoxic Myocardium (심근 저산소증 영상)

  • Bae, Sang-Kyun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.2
    • /
    • pp.141-145
    • /
    • 2005
  • Hypoxia (decreased tissue oxygen tension) is a component of many diseases such as tumors, cerebrovascular diseases and ischemic heart diseases. Although hypoxia can be secondary to a low inspired $pO_2$ or a variety of lung disorders, the most common cause is ischemia due to an oxygen demand greater than the local oxygen supply. In the heart tissue, hypoxia is often observed in persistent low-flow states, such as hibernating myocardium. Direct "hot spot" imaging of myocardial tissue hypoxia is potentially of great clinical importance because it may provide a means of identifying dysfunctional chronically ischemic but viable hibernating myocardium. A series of radiopharmaceuticals that incorporate nitroimidazole moieties have been synthesized to detect decreased local tissue pO2. In contrast to agents that localize in proportion to perfusion, these agents concentrate in hypoxic tissue. However, the ideal agents are not developed yet and the progress is very slow. Furthermore, the research focus is on tumor hypoxia nowadays. This review introduces the myocardial hypoxia imaging with summarizing the development of radiopharmaceuticals.

Synthetic Approach to 99mTc-labeled SPECT Radiotracers with Multi-nitroimidazoles for Hypoxia

  • Anh Thu Nguyen;Hee-Kwon Kim
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.28 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • Hypoxia, defined as the deficiency of oxygen, is a significant hallmark of cancers presenting in the majority of solid tumors. Detection of tumor hypoxia is essential in cancer diagnosis to prevent cancer progression, metastasis, and resistance to cancer therapies in clinical practices. Single-photon emission computed tomography (SPECT) is one of the methods studied and applied for hypoxia detection with the use of radiolabeled imaging agents in which 99mTc is the common radioisotope used for radiolabeling. Nitroimidazoles are the hypoxia-targeting moieties presenting in numerous 99mTc-radiolabeled imaging agents due to their bio-reducible ability in hypoxic environments. Recently, in addition to 99mTc-labeled radiopharmaceuticals containing one nitroimidazole unit, there has been considerable attention given to 99mTc-radiopharmaceuticals bearing two or more nitroimidazole units. This review summarizes the synthesis of hypoxia-targeting chelators and radiolabeling processes to produce these 99mTc-radiopharmaceuticals for SPECT imaging.

Synthesis of Novel 18F-Labeled-Nitroimidazole-Based Imaging Agents for Hypoxia: Recent Advances

  • Anh Thu Nguyen;Hee-Kwon Kim
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.27 no.2
    • /
    • pp.83-93
    • /
    • 2023
  • Hypoxia indicates the condition of low oxygen levels in tissues. In oncology, hypoxia can induce cancer progression and metastasis, as well as cause resistance to cancer therapies. The detection of hypoxia by using molecular imaging, particularly, positron emission tomography (PET) has been extensively studied due to many advantages. Nitroimidazoles, the moieties that can be trapped in hypoxic tissues due to selective reduction, have been used to design and synthesize of hypoxia-targeting radiopharmaceuticals. This review provides a summary of synthetic routes towards 18F-labeled-nitroimidazole radiotracers for PET imaging of hypoxia.

[18F]Labeled 2-nitroimidazole derivatives for hypoxia imaging

  • Seelam, Sudhakara Reddy;Lee, Yun-Sang;Jeong, Jae Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.2 no.2
    • /
    • pp.73-83
    • /
    • 2016
  • Imaging hypoxia using positron emission tomography (PET) is of great importance for cancer therapy. [$^{18}F$] Fluoromisonidazole (FMISO) was the first PET agent used for imaging tumor hypoxia. Various radiolabeled nitroimidazole derivatives such as [$^{18}F$]fluoroerythronitroimidazole (FETNIM), [$^{18}F$]1-${\alpha}$-D-(2-deoxy-2-fluoroarabinofuranosyl)-2-nitroimidazole(FAZA), 2-(2-nitroimidazol-1-yl)-N-(3,3,3-[18F]-trifluoropropyl)acetamide ([$^{18}F$]EF-3), [$^{18}F$]2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl) acetamide (EF-5), 3-[$^{18}F$]fluoro-2-(4-((2-nitro-1H-imidazol-1-yl)methyl)-1H-1,2,3,-triazol-1-yl)-propan-1-ol ([$^{18}F$]HX-4), and [$^{18}F$]fluoroetanidazole (FETA) were developed successively. However, these imaging agents still produce PET images with limited resolution; the lower blood flow in hypoxic tumors compared to normoxic tumors results in low uptake of the agents in hypoxic tumors. Thus, the development of better imaging agents is necessary.

Biodistribution and PET imaging of [18F]FMISO in mousecolon cancer xenografted mice

  • Seelam, Sudhakara Reddy;Lee, Ji Youn;Kim, Young Joo;Lee, Yun-Sang;Jeong, Jae Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.2
    • /
    • pp.137-144
    • /
    • 2015
  • Hypoxia is an important adverse prognostic factor for tumor progression and is a major cause of failure of radiation therapy. In case of short-term hypoxia, the metabolism can recover to normal, but if hypoxia persists, it causes irreversible cell damage and finally leads to death. So a hypoxia marker would be very useful in oncology. In particular, 2-nitroimidazole can be reduced to form a reactive chemical species, which can bind irreversibly to cell components in the absence of sufficient oxygen, thus, the development of radiolabeled nitroimidazole derivatives for the imaging of hypoxia remains an active field of research to improve cancer therapy result. 2-nitroimidazole based hypoxia marker, [$^{18}F$]FMISO holds promise for the evaluation of tumor hypoxia by Positron emission tomography (PET), at both global and local levels. In the present study, [$^{18}F$]FMISO was synthesized using an automatic synthesis module with high radiochemical purity (>99%) in 60 min. Immunohistochemical analysis using pimonidazole confirmed the presence of hypoxia in xenografted CT-26 tumor tissue. A biodistribution study in CT-26 xenografted mice showed that the increased tumor-to-muscle ratio and tumor-to-blood ratios from 10 to 120 min post-injection. In the PET study, [$^{18}F$]FMISO also showed increased tumor-to-muscle ratios from 10 to 120 min post-injection. In conclusion, this study demonstrates the feasibility and utility of [$^{18}F$]FMISO for imaging hypoxiain mouse colon cancer model using small animal PET.

Comparative study of 2-nitroimidazole-fluorophore-conjugated derivatives with pimonidazole for imaging tumor hypoxia

  • Seelam, Sudhakara Reddy;Hong, Mi Kyung;Lee, Yun-Sang;Jeong, Jae Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.5 no.2
    • /
    • pp.101-112
    • /
    • 2019
  • Herein, 2-nitroimidazole-fluorophore conjugates were synthesized by linking 2-nitroimidazole and FITC or RITC via thiourea bonds. The prepared derivatives were stable for 2 h in Dulbecco's modified Eagle's medium (DMEM) at 37 ℃. The novel conjugates were studied for their in vitro uptake under hypoxic conditions using U87MG and CT-26 cell lines, showing significantly higher uptakes in hypoxic than normoxic cells. Immunohistochemical analysis confirmed hypoxia in U87MG and CT-26 xenografted tumor tissues. Moreover, the prepared conjugates were evaluated by in vivo experiments after intravenous injection in U87MG and CT-26 xenografted mice. Hypoxia was confirmed by immunohistochemistry of the prepared derivatives with co-injected pimonidazole. Confocal microscopy of the prepared derivatives showed strong fluorescence in hypoxic tumor tissues correlated with the pimonidazole distribution. This suggested that the 2-nitroimidazole-fluorophore conjugates are promising optical imaging probes for tumor hypoxia and are promising substitutes for pimonidazole immunohistochemistry, which requires a multi-step procedure of incubation involving antibody, second antibody, dye, hydrogen peroxide, and multiple washing steps.

1-Benzyl indazole derivative-based 18F-labeled PET radiotracer: Radiosynthesis and cell uptake study in cancer cells

  • More, Kunal N.;Lee, Jun Young;Park, Jeong-Hoon;Chang, Dong-Jo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.5 no.1
    • /
    • pp.36-47
    • /
    • 2019
  • Hypoxia-inducible factor-1 ($HIF-1{\alpha}$) is a transcription factor activated in response to low oxygen level, and is highly expressed in many solid tumors. Moreover, $HIF-1{\alpha}$ is a representative biomarker of hypoxia and also helps to maintain cell homeostasis under hypoxic condition. Most solid tumors show hypoxia, which induces poor prognosis and resistance to conventional cancer therapies. Thus, early diagnosis of hypoxia with positron emission tomography (PET) radiotracer would be highly beneficial for management of malignant solid tumors with effective cancer therapy. YC-1 is a most promising candidate among several $HIF-1{\alpha}$ inhibitors. As an effort to develop a hypoxia imaging tool as a PET radiotracer, we designed and synthesized [$^{18}F$]DFYC based on potent derivative of YC-1 and performed preliminary in vitro cell uptake study. [$^{18}F$]DFYC showed a significant accumulation in SKBR-3 cells among other cancer cells, proving as a good lead to develop a hypoxic solid tumor such as breast cancer.

Tumor hypoxia and reoxygenation: the yin and yang for radiotherapy

  • Hong, Beom-Ju;Kim, Jeongwoo;Jeong, Hoibin;Bok, Seoyeon;Kim, Young-Eun;Ahn, G-One
    • Radiation Oncology Journal
    • /
    • v.34 no.4
    • /
    • pp.239-249
    • /
    • 2016
  • Tumor hypoxia, a common feature occurring in nearly all human solid tumors is a major contributing factor for failures of anticancer therapies. Because ionizing radiation depends heavily on the presence of molecular oxygen to produce cytotoxic effect, the negative impact of tumor hypoxia had long been recognized. In this review, we will highlight some of the past attempts to overcome tumor hypoxia including hypoxic radiosensitizers and hypoxia-selective cytotoxin. Although they were (still are) a very clever idea, they lacked clinical efficacy largely because of 'reoxygenation' phenomenon occurring in the conventional low dose hyperfractionation radiotherapy prevented proper activation of these compounds. Recent meta-analysis and imaging studies do however indicate that there may be a significant clinical benefit in lowering the locoregional failures by using these compounds. Latest technological advancement in radiotherapy has allowed to deliver high doses of radiation conformally to the tumor volume. Although this technology has brought superb clinical responses for many types of cancer, recent modeling studies have predicted that tumor hypoxia is even more serious because 'reoxygenation' is low thereby leaving a large portion of hypoxic tumor cells behind. Wouldn't it be then reasonable to combine hypoxic radiosensitizers and/or hypoxia-selective cytotoxin with the latest radiotherapy? We will provide some preclinical and clinical evidence to support this idea hoping to revamp an enthusiasm for hypoxic radiosensitizers or hypoxia-selective cytotoxins as an adjunct therapy for radiotherapy.

Brain Hypoxia Imaging (뇌 저산소증 영상)

  • Song, Ho-Chun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.2
    • /
    • pp.91-96
    • /
    • 2007
  • The measurement of pathologically low levels of tissue $pO_2$ is an important diagnostic goal for determining the prognosis of many clinically important diseases including cardiovascular insufficiency, stroke and cancer. The target tissues nowaday have mostly been tumors or the myocardium, with less attention centered on the brain. Radiolabelled nitroimidazole or derivatives may be useful in identifying the hypoxic cells in cerebrovascular disease or traumatic brain injury, and hypoxic-ischemic encephalopathy. In acute stroke, the target of therapy is the severely hypoxic but salvageable tissue. $^{18}F-MISO$ PET and $^{99}mTc-EC-metronidazole$ SPECT in patients with acute ischemic stroke identified hypoxic tissues and ischemic penumbra, and predicted its outcome. A study using $^{123}I-IAZA$ in patient with closed head injury detected the hypoxic tissues after head injury. Up till now these radiopharmaceuticals have drawbacks due to its relatively low concentration with hypoxic tissues associated with/without low blood-brain barrier permeability and the necessity to wait a long time to achieve acceptable target to background ratios for imaging in acute ischemic stroke. It is needed to develop new hypoxic marker exhibiting more rapid localization in the hypoxic region in the brain. And then, the hypoxic brain imaging with imidazoles or non-imidazoles may be very useful in detecting the hypoxic tissues, determining therapeutic strategies and developing therapeutic drugs in several neurological disease, especially, in acute ischemic stroke.