Imaging Hypoxic Myocardium

심근 저산소증 영상

  • Bae, Sang-Kyun (Department of Nuclear Medicine, Inje University College of Medicine)
  • 배상균 (인제대학교 의과대학 핵의학교실)
  • Published : 2005.04.30

Abstract

Hypoxia (decreased tissue oxygen tension) is a component of many diseases such as tumors, cerebrovascular diseases and ischemic heart diseases. Although hypoxia can be secondary to a low inspired $pO_2$ or a variety of lung disorders, the most common cause is ischemia due to an oxygen demand greater than the local oxygen supply. In the heart tissue, hypoxia is often observed in persistent low-flow states, such as hibernating myocardium. Direct "hot spot" imaging of myocardial tissue hypoxia is potentially of great clinical importance because it may provide a means of identifying dysfunctional chronically ischemic but viable hibernating myocardium. A series of radiopharmaceuticals that incorporate nitroimidazole moieties have been synthesized to detect decreased local tissue pO2. In contrast to agents that localize in proportion to perfusion, these agents concentrate in hypoxic tissue. However, the ideal agents are not developed yet and the progress is very slow. Furthermore, the research focus is on tumor hypoxia nowadays. This review introduces the myocardial hypoxia imaging with summarizing the development of radiopharmaceuticals.

Keywords

References

  1. Berne R, Levy M. Skeletal physiology. In: Berne R, Levy M, eds. Physiology. St. Louis: Mosby Yearbook, 1993:292-308
  2. Nunn A, Linder K, Strauss HW. Nitroimidazoles and imaging hypoxia. Eur J Nucl Med 1995;22:265-80 https://doi.org/10.1007/BF01081524
  3. Webster L. Drugs used in chemotherapy of protozoal infections. In: Gilman A, Rail T, Nies A, Taylor P, eds. The pharmacological basis of therapeutics. New York: Pergamon Press, 1990:1002-4
  4. Chapman JD, Franko AJ, Sharplin J. A marker for hypoxic cells in tumours with potential clinical applicability. Br J Cancer 1981;43:546-50 https://doi.org/10.1038/bjc.1981.79
  5. Sinusas AJ. The potential for myocardial imaging with hypoxia markers. Semin Nucl Med 1999;29:330-8 https://doi.org/10.1016/S0001-2998(99)80020-8
  6. Franko AJ. Misonidazole and other hypoxia markers: Metabolism and applications. Int J Radiat Oncol Biol Phys 1986;12:1195-202 https://doi.org/10.1016/0360-3016(86)90257-9
  7. Grunbaum Z, Freauff SJ, Krohn KA, Wilbur DS, Magee S, Rasey JS. Synthesis and characterization of congeners of misonidazole for imaging hypoxia. J Nucl Med 1987;28:68-75
  8. Jette DC, Wiebe LI, Chapman JD. Synthesis and in vivo studies of the radiosensitizer $4-[^{82}br]$bromomisonidazole. Int J Nucl Med Biol 1983;10:205-10 https://doi.org/10.1016/0047-0740(83)90080-3
  9. Jerabek PA, Patrick TB, Kilbourn MR, Dischino DD, Welch MJ. Synthesis and biodistribution of $^{18}F$-labeled fluoronitroimidazoles: Potential in vivo markers of hypoxic tissue. Int J Rad Appl Instrum [A] 1986;37:599-605 https://doi.org/10.1016/0883-2889(86)90079-1
  10. Grierson JR, Link JM, Mathis CA, Rasey JS, Krohn KA. A radiosynthesis of fluorine-18 fluoromisonidazole. J Nucl Med 1989;30:343-50
  11. Rasey JS, Grunbaum Z, Magee S, Nelson NJ, Olive PL, Durand RE, et al. Characterization of radiolabeled fluoromisonidazole as a probe for hypoxic cells. Radiat Res 1987;111:292-304 https://doi.org/10.2307/3576986
  12. Rasey JS, Koh WJ, Grierson JR, Grunbaum Z, Krohn KA. Radiolabelled fluoromisonidazole as an imaging agent for tumor hypoxia. Int J Radiat Oncol Biol Phys 1989;17:985-91 https://doi.org/10.1016/0360-3016(89)90146-6
  13. Martin GV, Cerqueira MD, Caldwell JH, Rasey JS, Embree L, Krohn KA. Fluoromisonidazole. A metabolic marker of myocyte hypoxia. Circ Res 1990;67:240-4 https://doi.org/10.1161/01.RES.67.1.240
  14. Shelton ME, Dence CS, Hwang DR, Welch MJ, Bergmann SR. Myocardial kinetics of fluorine-18 misonidazole: A marker of hypoxic myocardium. J Nucl Med 1989;30:351-8
  15. Martin GV, Caldwell JH, Rasey JS, Grunbaum Z, Cerqueira M, Krohn KA. Enhanced binding of the hypoxic cell marker $[^3H]$fluoromisonidazole in ischemic myocardium. J Nucl Med 1989;30:194-201
  16. Shelton ME, Dence CS, Hwang DR, Herrero P, Welch MJ, Bergmann SR. In vivo delineation of myocardial hypoxia during coronary occlusion using fluorine-18 fluoromisonidazole and positron emission tomography: A potential approach for identification of jeopardized myocardium. J Am Coll Cardiol 1990;16:477-85 https://doi.org/10.1016/0735-1097(90)90606-P
  17. Caldwell JH, Revenaugh JR, Martin GV, Johnson PM, Rasey JS, Krohn KA. Comparison of fluorine-18-fluorodeoxyglucose and tritiated fluoromisonidazole uptake during low-flow ischemia. J Nucl Med 1995;36:1633-8
  18. Strauss HW, Nunn A, Linder K. Nitroimidazoles for imaging hypoxic myocardium. J Nucl Cardiol 1995;2:437-45 https://doi.org/10.1016/S1071-3581(05)80031-5
  19. Linder KE, Chan YW, Cyr JE, Nowotnik DP, Eckelman WC, Nunn AD. Synthesis, characterization, and in vitro evaluation of nitroimidazole--BATO complexes: New technetium compounds designed for imaging hypoxic tissue. Bioconjug Chem 1993;4: 326-33 https://doi.org/10.1021/bc00023a004
  20. Ng CK, Sinusas AJ, Zaret BL, Soufer R. Kinetic analysis of technetium-99m-labeled nitroimidazole (BMS-181321) as a tracer of myocardial hypoxia. Circulation 1995;92:1261-8 https://doi.org/10.1161/01.CIR.92.5.1261
  21. Stone CK, Mulnix T, Nickles RJ, Renstrom B, Nellis SH, Liedtke AJ, et al. Myocardial kinetics of a putative hypoxic tissue marker, $^{99m}Tc$-labeled nitroimidazole (BMS-181321), after regional ischemia and reperfusion. Circulation 1995;92:1246-53 https://doi.org/10.1161/01.CIR.92.5.1246
  22. Shi CQ, Sinusas AJ, Dione DP, Singer MJ, Young LH, Heller EN, et al. Technetium-99m-nitroimidazole (BMS181321): A positive imaging agent for detecting myocardial ischemia. J Nucl Med 1995;36:1078-86
  23. Linder KE, Chan YW, Cyr JE, Malley MF, Nowotnik DP, Nunn AD. TcO(PnA.O-1-(2-nitroimidazole)) [BMS-181321], a new technetium-containing nitroimidazole complex for imaging hypoxia: Synthesis, characterization, and xanthine oxidase-catalyzed reduction. J Med Chem 1994;37:9-17 https://doi.org/10.1021/jm00027a002
  24. Ballinger JR, Kee JW, Rauth AM. In vitro and in vivo evaluation of a technetium-99m-labeled 2-nitroimidazole (BMS181321) as a marker of tumor hypoxia. J Nucl Med 1996;37:1023-31
  25. Johnson LL, Schofield L, Mastrofrancesco P, Donahay T, Nott L. Technetium-99m-nitroimadazole uptake in a swine model of demand ischemia. J Nucl Med 1998;39:1468-75
  26. Okada RD, Johnson G, 3rd, Nguyen KN, Liu Z, Edwards B, Archer CM, et al. $^{99m}Tc$-HL91: 'hot spot' detection of ischemic myocardium in vivo by gamma camera imaging. Circulation 1998;97:2557-66 https://doi.org/10.1161/01.CIR.97.25.2557
  27. Johnson LL, Schofield L, Donahay T, Mastrofrancesco P. Myocardial uptake of a $^{99m}Tc$-nitroheterocycle in a swine model of occlusion and reperfusion. J Nucl Med 2000;41:1237-43
  28. Fujibayashi Y, Taniuchi H, Yonekura Y, Ohtani H, Konishi J, Yokoyama A. Copper-62-ATSM: A new hypoxia imaging agent with high membrane permeability and low redox potential. J Nucl Med 1997;38:1155-60