• 제목/요약/키워드: Hypothalamic-Pituitary-Adrenal Axis

검색결과 56건 처리시간 0.025초

Molecular cloning, tissue distribution and quantitative analysis of two proopiomelanocortin mRNAs in Japanese flounder (Paralichthys olivaceus)

  • Kim, Kyoung-Sun;Kim, Hyun-Woo;Chen, Thomas T.;Kim, Young-Tae
    • BMB Reports
    • /
    • 제42권4호
    • /
    • pp.206-211
    • /
    • 2009
  • Proopiomelanocortin (POMC) plays an essential role in the stress response of the hypothalamic-pituitary-adrenal axis, and is the precursor of biologically active peptides such as adrenocorticotropin (ACTH), $\alpha$-melanocyte-stimulating hormone ($\alpha$-MSH), $\beta$-melanocyte-stimulation hormone ($\beta$-MSH) and $\beta$-endorphin. We have synthesized two different forms of POMC cDNA clones, POMC-I and POMC-II, from a pituitary cDNA library for Paralichthys olivaceus, or Japanese flounder. jfPOMC-I cDNA consists of 954bp and encodes a polypeptide of 216 amino acid residues, whereas jfPOMC-II consists of 971bp which encode a polypeptide of 194 amino acid residues. The high levels of jfPOMC-I and -II mRNAs detected in the pituitary tissue and moderate levels detected in the brain tissue plus our quantitative RT-PCR analysis, which showed there to be no significant difference between the levels of jfPOMC-I and -II mRNAs, indicate that there may be no functional separation between these two mRNAs in the flounder.

백서에서 금식으로 인한 스트레스 대응축 활성화의 회복조절기전에서 구강인두로부터 입수되는 다양한 맛 자극의 효과 (Effects of oropharyngeal taste stimuli in the restoration of the fasting-induced activation of the HPA axis in rats)

  • 유상배;이종호;류비탈리;장정원
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제37권3호
    • /
    • pp.195-204
    • /
    • 2011
  • Introduction: This study examined the regulatory mechanism underlying the meal-induced changes in the hypothalamic-pituitary-adrenal gland (HPA) axis activity. Materials and Methods: Male Sprague-Dawley rats (250-300 g) were hired for two different experiments as follows; 1) rats received either 8% sucrose or 0.2% saccharin ad libitum after 48 h of food deprivation with the gastric fistula closed (real feeding) or opened (sham feeding). 2). rats received 5 ml of intra-oral infusion with 0.2% saccharin or distilled water after 48 h of food deprivation. One hour after food access, all rats were sacrificed by a transcardiac perfusion with 4% paraformaldehyde. The brains were processed for c-Fos immunohistochemistry and the cardiac blood was collected for the plasma corticosterone assay. Results: Real feedings with sucrose or saccharin and sham feeding saccharin but not sucrose, following food deprivation decreased the plasma corticosterone level. c-Fos expression in the nucleus tractus of solitarius (NTS) of the fasted rats was increased by the consumption of sucrose but not saccharin, regardless of the feeding method. On the other hand, the consumption of sucrose or saccharin with real feeding but not the sham, induced c-Fos expression in the paraventricular nucleus (PVN) of the fasted rats. The intra-oral infusion with saccharin or water decreased the plasma corticosterone level of the fasted rats. Intra-oral water infusion increased c-Fos expression in both the PVN and NTS, but saccharin only in the NTS in the fasted rats. Conclusion: Neither restoration of the fasting-induced elevation of plasma corticosterone nor the activation of neurons in the PVN and NTS after refeeding requires the palatability of food or the post-ingestive satiety and caloric load. In addition, neuronal activation in the hypothalamic PVN may not be an implication in the restoration of the fasting-induced elevation of the plasma corticosterone by oropharyngeal stimuli of palatable food.

Origins of Addiction Predictably Embedded in Childhood Trauma: A Neurobiological Review

  • Wiet, Susie
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • 제28권1호
    • /
    • pp.4-13
    • /
    • 2017
  • The seeds of addiction are typically sown years prior to the onset of addictive substance use or engagement in addictive behaviors, due to the priming of the reward pathway (RewP) by alterations in the mechanism of stress-signaling from the hypothalamic-pituitary-adrenal axis (HPA) and related pathways. Excessive stress from a single-event and/or cumulative life experiences during childhood, such as those documented in the Adverse Childhood Experiences Study, is translated into neurobiological toxicity that alters the set-point of the HPA axis and limbic system homeostasis [suggested new term: regulation pathway (RegP)]. The resultant alteration of the RegP not only increases the risk for psychiatric and physical illness, but also that for early onset and chronic addictions by dysregulating the RewP. This paper reviews the interface of these symbiotic pathways that result in the phenotypic pathology of emotional dysregulation, cognitive impairment, and compulsive behaviors, as well as morbidity and shorter life expectancy when dysregulated by chronic stress.

Chronic Administration of Catechin Decreases Depression and Anxiety-Like Behaviors in a Rat Model Using Chronic Corticosterone Injections

  • Lee, Bombi;Sur, Bongjun;Kwon, Sunoh;Yeom, Mijung;Shim, Insop;Lee, Hyejung;Hahm, Dae-Hyun
    • Biomolecules & Therapeutics
    • /
    • 제21권4호
    • /
    • pp.313-322
    • /
    • 2013
  • Previous studies have demonstrated that repeated administration of the exogenous stress hormone corticosterone (CORT) induces dysregulation in the hypothalamic-pituitary-adrenal (HPA) axis and results in depression and anxiety. The current study sought to verify the impact of catechin (CTN) administration on chronic CORT-induced behavioral alterations using the forced swimming test (FST) and the elevated plus maze (EPM) test. Additionally, the effects of CTN on central noradrenergic systems were examined by observing changes in neuronal tyrosine hydroxylase (TH) immunoreactivity in rat brains. Male rats received 10, 20, or 40 mg/kg CTN (i.p.) 1 h prior to a daily injection of CORT for 21 consecutive days. The activation of the HPA axis in response to the repeated CORT injections was confirmed by measuring serum levels of CORT and the expression of corticotrophin-releasing factor (CRF) in the hypothalamus. Daily CTN administration significantly decreased immobility in the FST, increased open-arm exploration in the EPM test, and significantly blocked increases of TH expression in the locus coeruleus (LC). It also significantly enhanced the total number of line crossing in the open-field test (OFT), while individual differences in locomotor activities between experimental groups were not observed in the OFT. Taken together, these findings indicate that the administration of CTN prior to high-dose exogenous CORT significantly improves helpless behaviors, possibly by modulating the central noradrenergic system in rats. Therefore, CTN may be a useful agent for the treatment or alleviation of the complex symptoms associated with depression and anxiety disorders.

Effect of fermented red ginseng on gut microbiota dysbiosis- or immobilization stress-induced anxiety, depression, and colitis in mice

  • Yoon-Jung Shin;Dong-Yun Lee;Joo Yun Kim;Keon Heo;Jae-Jung Shim;Jung-Lyoul Lee;Dong-Hyun Kim
    • Journal of Ginseng Research
    • /
    • 제47권2호
    • /
    • pp.255-264
    • /
    • 2023
  • Background: Red ginseng (RG) alleviates psychiatric disorders. Fermented red ginseng (fRG) alleviates stress-induced gut inflammation. Gut dysbiosis causes psychiatric disorders with gut inflammation. To understand the gut microbiota-mediated action mechanism of RG and fRG against anxiety/depression (AD), we investigated the effects of RG, fRG, ginsenoside Rd, and 20(S)-β-D-glucopyranosyl protopanaxadiol (CK) on gut microbiota dysbiosis-induced AD and colitis in mice. Methods: Mice with AD and colitis were prepared by exposing to immobilization stress (IS) or transplanting the feces of patients with ulcerative colitis and depression (UCDF). AD-like behaviors were measured in the elevated plus maze, light/dark transition, forced swimming, and tail suspension tests. Results: Oral gavage of UCDF increased AD-like behaviors and induced neuroinflammation, gastrointestinal inflammation, and gut microbiota fluctuation in mice. Oral administration of fRG or RG treatment reduced UCDF-induced AD-like behaviors, hippocampal and hypothalamic IL-6 expression, and blood corticosterone level, whereas UCDF-suppressed hippocampal BDNF+NeuN+ cell population and dopamine and hypothalamic serotonin levels increased. Furthermore, their treatments suppressed UCDF-induced colonic inflammation and partially restored UCDF-induced gut microbiota fluctuation. Oral administration of fRG, RG, Rd, or CK also decreased IS-induced AD-like behaviors, blood IL-6 and corticosterone and colonic IL-6 and TNF-α levels, and gut dysbiosis, while IS-suppressed hypothalamic dopamine and serotonin levels increased. Conclusion: Oral gavage of UCDF caused AD, neuroinflammation, and gastrointestinal inflammation in mice. fRG mitigated AD and colitis in UCDF-exposed mice by the regulation of the microbiota-gut-brain axis and IS-exposed mice by the regulation of the hypothalamic-pituitary-adrenal axis.

우울증의 신경생물학 (Neurobiology of Depression)

  • 김영훈;이상경;이정구;김정익
    • 생물정신의학
    • /
    • 제6권1호
    • /
    • pp.3-11
    • /
    • 1999
  • At the beginning, researches on the biology of depression or affective illness have focused mainly on the receptor functions and neuroendocrine activities. And the studies of the past years did not break new theoretical background, but the recent advances in the research on the molecular mechanisms underlying neural communication and signal transduction do add some insights to many established ideas. This article will overview some of the more recent advances in the clinical researches of depression. Our major concerns to be presented here include the followings : (1) alterations in the post-synaptic neural transduction ; (2) changes in the neurons of hypothalamic neuropeptides ; (3) decreased peptidase enzyme activities ; (4) associations of hypothalamic-pituitary-adrenal axis abnormalities with serotonin neurotransmission ; (5) role of serotonin transporter ; (6) changes in the responsiveness of intracellular calcium ion levels ; (7) the inositol deficiency theory of lithium and depression ; (8) the transcription factors including immediate early genes ; (9) recent genetic studies in some families. This brief overview will suggest that changes in DNA occur during antidepressant therapy. These changes at the DNA level initiating a cascade of events underlying antidepressant modality will give us the insights on the molecular biological basis of the pathogenesis of depression and cues for a new class of antidepressants.

  • PDF

3D-QSAR Studies of 8-Substituted-2-aryl-5-alkylaminoquinolines as Corticotropin-releasing Factor-1 Receptor Antagonists

  • Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제8권3호
    • /
    • pp.176-183
    • /
    • 2015
  • Corticotropin-releasing actor receptors (CRFRs) activates the hypothalamic pituitary adrenal axis, one of the 2 parts of the fight or flight response to stress. Increased CRH production has is associated with Alzheimer's disease and major depression and hypoglycemia. In this study, we report the important structural and chemical parameters for CRFR inhibitors using the derivatives of 8-substituted-2-aryl-5-alkylaminoquinolines. A 3D QSAR study, Comparative molecular field analysis (CoMFA) was performed. The best predictions were obtained for the best CoMFA model with a $q^2$ of 0.607 with 6 components and $r^2$ of 0.991. The statistical parameters from the generated CoMFA models indicated that the data are well fitted and have high predictive ability. The contour map resulted from the CoMFA models might be helpful in the future designing of novel and more potent CRFR derivatives.

새로운 우울증 치료 약물 (Novel Pharmacological Treatment for Depression)

  • 정희정;문은수
    • 생물정신의학
    • /
    • 제23권1호
    • /
    • pp.1-11
    • /
    • 2016
  • Development of various antidepressants such as monoamine oxidase inhibitors, tricyclic antidepressants, selective serotonin reuptake inhibitors, serotonin norepinephrine reuptake inhibitors, and noradrenergic and specific serotonergic antidepressant has led to a tremendous progression of pharmaceutical treatment for depression, but still there are some limitations of current antidepressants, such as treatment-resistant depression and delayed onset of antidepressants. The pathogenesis of depression is unclear because depression is a heterogeneous disease state, and the mechanisms of antidepressants remain uncertain as well. Nevertheless, in an attempt to develop novel antidepressants, some trials have been conducted based on the potential biological mechanism discovered in the numerous research results. This review will provide information about the potential novel antidepressants and the current states of clinical studies using them. In particular, some potential novel antidepressants anti-inflammatory agents, antioxidants, anticholinergics, modulators of Hypothalamic Pituitary Adrenal Axis, glutamate, and opioid systems, as well as some neuropeptides such as susbstance P, neuropeptide Y, and galanin will be discussed.

Comparative Molecular Similarity Indices Analysis (CoMSIA) of 8-substituted-2-aryl-5-alkylaminoquinolines as Corticotropin-releasing factor-1 Receptor Antagonists

  • Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제9권4호
    • /
    • pp.241-248
    • /
    • 2016
  • Corticotropin-releasing factor receptors (CRFRs) activate the hypothalamic-pituitary-adrenal axis, which is an integral part of the fight or flight response to stress. Increase in CRH level is observed in Alzheimer's disease and major depression and hypoglycemia. Here, we report on the relevant physicochemical parameters required for the CRFR inhibitors. Comparative molecular similarity indices analysis (CoMSIA) was performed with the derivatives of 8-substituted-2-aryl-5-alkylaminoquinolinesas CRFR inhibitors. The best predictions were obtained for the best CoMSIA model with a $q^2$ of 0.576 with 6 components and $r^2$ of 0.977. The statistical parameters from the generated CoMSIA models indicated that the data are well fitted and have high predictive ability. CoMSIA contour maps could be useful in the designing of more potent and novel CRFR derivatives.

Wound Healing Consequences of Psychological Stress

  • Whitney, JoAnne D.;Heiner, Stacy
    • Perspectives in Nursing Science
    • /
    • 제2권1호
    • /
    • pp.48-60
    • /
    • 2005
  • The relationship of psychological stress to human health is of interest to health care providers and researchers in the field of psychoneuroimmunology. The effect of stress on wound healing is a sub-component of study within the larger context, with relevance to both wounds that are acute and chronic in nature. Data from several studies that explore the influence of stress on events early in the trajectory of wound healing suggest that activation of both the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis are involved. There is consistent evidence that psychological stress is associated with dysregulation of immune and other responses to tissue injury that are required for healing and also to the final wound healing result. Current data pertinent to psychological stress and its wound healing consequences is reviewed and a biopsychosocial framework for future studies in this area is suggested and described.

  • PDF