DOI QR코드

DOI QR Code

Chronic Administration of Catechin Decreases Depression and Anxiety-Like Behaviors in a Rat Model Using Chronic Corticosterone Injections

  • Lee, Bombi (Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University) ;
  • Sur, Bongjun (The Graduate School of Basic Science of Oriental Medicine, College of Oriental Medicine, Kyung Hee University) ;
  • Kwon, Sunoh (Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University) ;
  • Yeom, Mijung (Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University) ;
  • Shim, Insop (Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University) ;
  • Lee, Hyejung (Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University) ;
  • Hahm, Dae-Hyun (Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University)
  • Received : 2013.01.09
  • Accepted : 2013.06.07
  • Published : 2013.07.31

Abstract

Previous studies have demonstrated that repeated administration of the exogenous stress hormone corticosterone (CORT) induces dysregulation in the hypothalamic-pituitary-adrenal (HPA) axis and results in depression and anxiety. The current study sought to verify the impact of catechin (CTN) administration on chronic CORT-induced behavioral alterations using the forced swimming test (FST) and the elevated plus maze (EPM) test. Additionally, the effects of CTN on central noradrenergic systems were examined by observing changes in neuronal tyrosine hydroxylase (TH) immunoreactivity in rat brains. Male rats received 10, 20, or 40 mg/kg CTN (i.p.) 1 h prior to a daily injection of CORT for 21 consecutive days. The activation of the HPA axis in response to the repeated CORT injections was confirmed by measuring serum levels of CORT and the expression of corticotrophin-releasing factor (CRF) in the hypothalamus. Daily CTN administration significantly decreased immobility in the FST, increased open-arm exploration in the EPM test, and significantly blocked increases of TH expression in the locus coeruleus (LC). It also significantly enhanced the total number of line crossing in the open-field test (OFT), while individual differences in locomotor activities between experimental groups were not observed in the OFT. Taken together, these findings indicate that the administration of CTN prior to high-dose exogenous CORT significantly improves helpless behaviors, possibly by modulating the central noradrenergic system in rats. Therefore, CTN may be a useful agent for the treatment or alleviation of the complex symptoms associated with depression and anxiety disorders.

Keywords

References

  1. Ago, Y., Yano, K., Araki, R., Hiramatsu, N., Kita, Y., Kawasaki, T., Onoe, H., Chaki, S., Nakazato, A., Hashimoto, H., Baba, A., Takuma, K. and Matsuda, T. (2013) Metabotropic glutamate 2/3 receptor antagonists improve behavioral and prefrontal dopaminergic alterations in the chronic corticosterone-induced depression model in mice. Neuropharmacology 65, 29-38. https://doi.org/10.1016/j.neuropharm.2012.09.008
  2. Aina, Y. and Susman, J. L. (2006) Understanding comorbidity with depression and anxiety disorders. J. Am. Osteopath. Assoc. 106, S9-S14. Review.
  3. Anisman, H. and Matheson, K. (2005) Stress, depression, and anhedonia: Caveats concerning animal models. Neurosci. Biobehav. Rev. 29, 525-546. https://doi.org/10.1016/j.neubiorev.2005.03.007
  4. Ashafaq, M., Raza, S. S., Khan, M. M., Ahmad, A., Javed, H., Ahmad, M. E., Tabassum, R., Islam, F., Siddiqui, M. S., Safhi, M. M. and Islam, F. (2012) Catechin hydrate ameliorates redox imbalance and limits infl ammatory response in focal cerebral ischemia. Neurochem. Res. 37, 1747-1760. https://doi.org/10.1007/s11064-012-0786-1
  5. Baluchnejadmojarad, T. and Roghani, M. (2011) Chronic epigallocatechin-3-gallate ameliorates learning and memory defi cits in diabetic rats via modulation of nitric oxide and oxidative stress. Behav. Brain Res. 224, 305-310. https://doi.org/10.1016/j.bbr.2011.06.007
  6. Burckhardt, I. C., Gozal, D., Dayyat, E., Cheng, Y., Li, R. C., Goldbart, A. D. and Row, B. W. (2008) Green tea catechin polyphenols attenuate behavioral and oxidative responses to intermittent hypoxia. Am. J. Respir. Crit. Care Med. 177, 1135-1141. https://doi.org/10.1164/rccm.200701-110OC
  7. Chen, W. Q., Zhao, X. L., Wang, D. L., Li, S. T., Hou, Y., Hong, Y. and Cheng, Y. Y. (2010) Effects of epigallocatechin-3-gallate on behavioral impairments induced by psychological stress in rats. Exp. Biol. Med. (Maywood). 235, 577-583. https://doi.org/10.1258/ebm.2010.009329
  8. Cryan, J. F. and Holmes, A. (2005) The ascent of mouse: advances in modelling human depression and anxiety. Nat. Rev. Drug Discov. 4, 775-790. https://doi.org/10.1038/nrd1825
  9. Dal Belo, S. E., Gaspar, L. R. and Maia Campos, P. M. (2011) Photoprotective effects of topical formulations containing a combination of Ginkgo biloba and green tea extracts. Phytother. Res. 25, 1854-1860. https://doi.org/10.1002/ptr.3507
  10. Dazzi, L., Seu, E., Cherchi, G. and Biggio, G. (2005) Chronic administration of the SSRI fl uvoxamine markedly and selectively reduces the sensitivity of cortical serotonergic neurons to footshock stress. Eur. Neuropsychopharmacol. 15, 283-290. https://doi.org/10.1016/j.euroneuro.2004.11.003
  11. Deligiannidis, K. M. and Freeman, M. P. (2010) Complementary and alternative medicine for the treatment of depressive disorders in women. Psychiatr. Clin. North Am. 33, 441-463. https://doi.org/10.1016/j.psc.2010.01.002
  12. Evans, J., Sun, Y., McGregor, A. and Connor, B. (2012) Allopregnanolone regulates neurogenesis and depressive/anxiety-like behaviour in a social isolation rodent model of chronic stress. Neuropharmacology 63, 1315-1326. https://doi.org/10.1016/j.neuropharm.2012.08.012
  13. Fan, J. M., Chen, X. O., Jin, H. and Du. J. Z. (2009) Gestational hypoxia alone or combined with restraint sensitizes the hypothalamic-pituitary-adrenal axis and induces anxiety-like behavior in adult male rat offspring. Neuroscience 159, 1363-1373. https://doi.org/10.1016/j.neuroscience.2009.02.009
  14. Gregus, A., Wintink, A. J., Davis, A. C. and Kalynchuk, L. E. (2005) Effect of repeated corticosterone injections and restraint stress on anxiety and depression-like behavior in male rats. Behav. Brain Res. 156, 105-114. https://doi.org/10.1016/j.bbr.2004.05.013
  15. ill, M. N., Hellemans, K. G., Verma, P., Gorzalka, B. B. and Weinberg, J. (2012) Neurobiology of chronic mild stress: parallels to major depression. Neurosci. Biobehav. Rev. 36, 2085-2117. https://doi.org/10.1016/j.neubiorev.2012.07.001
  16. uang, Z., Zhong, X. M., Li, Z. Y., Feng, C. R., Pan, A. J. and Mao, Q. Q. (2011) Curcumin reverses corticosterone-induced depressivelike behavior and decrease in brain BDNF levels in rats. Neurosci. Lett. 493, 145-148. https://doi.org/10.1016/j.neulet.2011.02.030
  17. Kokras, N., Dalla, C., Sideris, A. C., Dendi, A., Mikail, H. G., Antoniou, K. and Papadopoulou-Daifoti, Z. (2012) Behavioral sexual dimorphism in models of anxiety and depression due to changes in HPA axis activity. Neuropharmacology 62, 436-445. https://doi.org/10.1016/j.neuropharm.2011.08.025
  18. Kutiyanawalla, A., Terry, A. V. and Jr. Pillai, A. (2011) Cysteamine attenuates the decreases in TrkB protein levels and the anxiety/ depression-like behaviors in mice induced by corticosterone treatment. PLoS One 6, e26153. https://doi.org/10.1371/journal.pone.0026153
  19. Kwon, S., Lee, B., Kim, M., Lee, H., Park, H. J. and Hahm, D. H. (2010) Antidepressant-like effect of the methanolic extract from Bupleurum falcatum in the tail suspension test. Prog. Neuropsychopharmacol Biol. Psychiatry 34, 265-270. https://doi.org/10.1016/j.pnpbp.2009.11.015
  20. Lee, B., Shim, I., Lee, H. J., Yang, Y. and Hahm, D. H. (2009) Effects of acupuncture on chronic corticosterone-induced depression-like behavior and expression of neuropeptide Y in the rats. Neurosci. Lett. 453, 15-16.
  21. Lee, B., Sur, B. J., Kwon, S., Jung, E., Shim, I., Lee, H. and Hahm, D. H. (2012) Acupuncture stimulation alleviates corticosteroneinduced impairments of spatial memory and cholinergic neurons in rats. Evid. Based Complement. Alternat. Med. 2012, 670536.
  22. Li, Q., Zhao, H. F., Zhang, Z. F., Liu, Z. G., Pei, X. R., Wang, J. B. and Li, Y. (2009) Long-term green tea catechin administration prevents spatial learning and memory impairment in senescance-accelerated mouse prone-8 mice by decreasing Abeta1-42 oligomers and upregulating synaptic plasticity-related proteins in the hippocampus. Neuroscience 163, 741-749. https://doi.org/10.1016/j.neuroscience.2009.07.014
  23. Liebert, R. and Gavey N. (2009) There are always two sides to these things: managing the dilemma of serious adverse effects from SSRIs. Soc. Sci. Med. 68, 1882-1891. https://doi.org/10.1016/j.socscimed.2009.02.047
  24. Lin, S. M., Wang, S. W., Ho, S. C. and Tang, Y. L. (2010) Protective effect of green tea (-)-epigallocatechin-3-gallate against the monoamine oxidase B enzyme activity increase in adult rat brains. Nutrition 26, 1195-1200. https://doi.org/10.1016/j.nut.2009.11.022
  25. Liu, W., Xu, Y., Lu, J., Zhang, Y., Sheng, H. and Ni, X. (2012) Swimming exercise ameliorates depression-like behaviors induced by prenatal exposure to glucocorticoids in rats. Neurosci. Lett. 524, 119-123. https://doi.org/10.1016/j.neulet.2012.07.011
  26. MacGillivray, L., Reynolds, K. B., Sickand, M., Rosebush, P. I. and Mazurek, M. F. (2011) Inhibition of the serotonin transporter induces microglial activation and downregulation of dopaminergic neurons in the substantia nigra. Synapse 65, 1166-1172. https://doi.org/10.1002/syn.20954
  27. Mackenzie, C. S., Reynolds, K., Cairney, J., Streiner, D. L. and Sareen, J. (2012) Disorder-specifi c mental health service use for mood and anxiety disorders: associations with age, sex, and psychiatric comorbidity. Depress. Anxiety 29, 234-242. https://doi.org/10.1002/da.20911
  28. Mandel, S., Amit, T., Reznichenko, L., Weinreb, O. and Youdim, M. B. (2006) Green tea catechins as brain-permeable, natural iron chelators-antioxidants for the treatment of neurodegenerative disorders. Mol. Nutr. Food Res. 50, 229-234. Review. https://doi.org/10.1002/mnfr.200500156
  29. McLaughlin, K. J., Gomez, J. L., Baran, S. E. and Conrad, C. D. (2007) The effects of chronic stress on hippocampal morphology and function: an evaluation of chronic restraint paradigms. Brain Res. 1161, 56-64. https://doi.org/10.1016/j.brainres.2007.05.042
  30. Molina-Hernandez, M., Tellez-Alcantara, N. P., Olivera-Lopez, J. I. and Jaramillo, M. T. (2012) Intra-lateral septal infusions of folic acid alone or combined with various antidepressant drugs produce antidepressant-like actions in male Wistar rats forced to swim. Prog. Neuropsychopharmacol. Biol. Psychiatry 36, 78-84. https://doi.org/10.1016/j.pnpbp.2011.08.020
  31. Niu, K., Hozawa, A., Kuriyama, S., Ebihara, S., Guo, H., Nakaya, N., Ohmori-Matsuda, K., Takahashi, H., Masamune, Y., Asada, M., Sasaki, S., Arai, H., Awata, S., Nagatomi, R. and Tsuji, I. (2009) Green tea consumption is associated with depressive symptoms in the elderly. Am. J. Clin. Nutr. 90, 1615-1622. https://doi.org/10.3945/ajcn.2009.28216
  32. Osterhout, C. A., Sterling, C. R., Chikaraishi, D. M. and Tank, A. W. (2005) Induction of tyrosine hydroxylase in the locus coeruleus of transgenic mice in response to stress or nicotine treatment: lack of activation of tyrosine hydroxylase promoter activity. J. Neurochem. 94, 731-741. https://doi.org/10.1111/j.1471-4159.2005.03222.x
  33. Park, H. J., Shim, H. S., Kim, H., Kim, K. S., Lee, H., Hahm, D. H. and Shim, I. (2010) Effects of Glycyrrhizae Radix on repeated restraint stress-induced neurochemical and behavioral responses. Korean J. Physiol. Pharmacol. 14, 371-376. https://doi.org/10.4196/kjpp.2010.14.6.371
  34. Paxinos, G. and Watson, C. (1986) The rat brain in stereotaxic coordinates. Academic Press., New York.
  35. Roozendaal, B., Hui, G. K., Hui, I. R., Berlau, D. J., McGaugh, J. L. and Weinberger, N. M. (2006) Basolateral amygdala noradrenergic activity mediates corticosterone-induced enhancement of auditory fear conditioning. Neurobiol. Learn. Mem. 86, 249-255. https://doi.org/10.1016/j.nlm.2006.03.003
  36. Sevgi, S., Ozek, M. and Eroglu, L. (2006) L-NAME prevents anxietylike and depression-like behavior in rats exposed to restraint stress. Methods Find. Exp. Clin. Pharmacol. 28, 95-99. https://doi.org/10.1358/mf.2006.28.2.977840
  37. Sigwalt, A. R., Budde, H., Helmich, I., Glaser, V., Ghisoni, K., Lanza, S., Cadore, E. L., Lhullier, F. L., de Bem, A. F., Hohl, A., de Matos, F. J., de Oliveira, P. A., Prediger, R. D., Guglielmo, L. G. and Latini, A. (2011) Molecular aspects involved in swimming exercise training reducing anhedonia in a rat model of depression. Neuroscience 192, 661-674. https://doi.org/10.1016/j.neuroscience.2011.05.075
  38. Spasojevic, N., Gavrilovic, L. and Dronjak, S. (2010) Effects of repeated maprotiline and fl uoxetine treatment on gene expression of catecholamine synthesizing enzymes in adrenal medulla of unstressed and stressed rats. Auton. Autacoid Pharmacol. 30, 213-217. https://doi.org/10.1111/j.1474-8673.2010.00458.x
  39. Steiner, M. A., Marsicano, G., Nestler, E. J., Holsboer, F., Lutz, B. and Wotjak, C. T. (2008) Antidepressant-like behavioral effects of impaired cannabinoid receptor type 1 signaling coincide with exaggerated corticosterone secretion in mice. Psychoneuroendocrinology 33, 54-67. https://doi.org/10.1016/j.psyneuen.2007.09.008
  40. Surget, A., Saxe, M., Leman, S., Ibarguen-Vargas, Y., Chalon, S., Griebel, G., Hen, R. and Belzung, C. (2008) Drug-dependent requirement of hippocampal neurogenesis in a model of depression and of antidepressant reversal. Biol. Psychiatry 64, 293-301. https://doi.org/10.1016/j.biopsych.2008.02.022
  41. Tanaka, T., Miyata, Y., Tamaya, K., Kusano, R., Matsuo, Y., Tamaru, S., Tanaka, K., Matsui, T., Maeda, M. and Kouno, I. (2009) Increase of theafl avin gallates and thearubigins by acceleration of catechin oxidation in a new fermented tea product obtained by the tea-rolling processing of loquat (Eriobotrya japonica) and green tea leaves. J. Agric. Food Chem. 57, 5816-5822. https://doi.org/10.1021/jf900963p
  42. Tanaka, M. and Telegdy, G. (2008) Involvement of adrenergic and serotonergic receptors in antidepressant-like effect of urocortin 3 in a modifi ed forced swimming test in mice. Brain Res. Bull. 77, 301-305. https://doi.org/10.1016/j.brainresbull.2008.08.012
  43. Torres, I. L., Gamaro, G. D., Vasconcellos, A. P., Silveira, R. and Dalmaz, C. (2002) Effects of chronic restraint stress on feeding behavior and on monoamine levels in different brain structures in rats. Neurochem. Res. 27, 519-525. https://doi.org/10.1023/A:1019856821430
  44. Uliaszek, A. A., Zinbarg, R. E., Mineka, S., Craske, M. G., Sutton, J. M., Griffi th, J. W., Rose, R., Waters, A. and Hammen, C. (2010) The role of neuroticism and extraversion in the stress-anxiety and stress-depression relationships. Anxiety Stress Coping 23, 363-381. https://doi.org/10.1080/10615800903377264
  45. Waters, P. and McCormick, C. M. (2011) Caveats of chronic exogenous corticosterone treatments in adolescent rats and effects on anxiety-like and depressive behavior and hypothalamic-pituitaryadrenal (HPA) axis function. Biol. Mood Anxiety Disord. 1, 4. https://doi.org/10.1186/2045-5380-1-4
  46. Wuppen, K., Oesterle, D., Lewicka, S., Kopitz, J. and Plaschke, K. (2010) A subchronic application period of glucocorticoids leads to rat cognitive dysfunction whereas physostigmine induces a mild neuroprotection. J. Neural Transm. 117, 1055-1065. https://doi.org/10.1007/s00702-010-0441-4
  47. Yi, L. T., Li, J., Li, H. C., Zhou, Y., Su, B. F., Yang, K. F., Jiang, M. and Zhang, Y. T. (2012) Ethanol extracts from Hemerocallis citrina attenuate the decreases of brain-derived neurotrophic factor, TrkB levels in rat induced by corticosterone administration. J. Ethnopharmacol. 144, 328-334. https://doi.org/10.1016/j.jep.2012.09.016
  48. Yilmaz, Y. and Toledo, R. T. (2004) Major fl avonoids in grape seeds and skins: antioxidant capacity of catechin, epicatechin, and gallic acid. J. Agric. Food Chem. 52, 255-260. https://doi.org/10.1021/jf030117h
  49. Zhu, W. L., Shi, H. S., Wei, Y. M., Wang, S. J., Sun, C. Y., Ding, Z. B. and Lu, L. (2012) Green tea polyphenols produce antidepressantlike effects in adult mice. Pharmacol. Res. 65, 74-80.

Cited by

  1. Alpha-Asarone, a Major Component ofAcorus gramineus, Attenuates Corticosterone-Induced Anxiety-Like Behaviours via Modulating TrkB Signaling Process vol.18, pp.3, 2014, https://doi.org/10.4196/kjpp.2014.18.3.191
  2. L-Tetrahydropalmatine Ameliorates Development of Anxiety and Depression-Related Symptoms Induced by Single Prolonged Stress in Rats vol.22, pp.3, 2014, https://doi.org/10.4062/biomolther.2014.032
  3. Strain Differences in the Chronic Mild Stress Animal Model of Depression and Anxiety in Mice vol.22, pp.5, 2014, https://doi.org/10.4062/biomolther.2014.058
  4. Mangiferin prevents corticosterone-induced behavioural deficits via alleviation of oxido-nitrosative stress and down-regulation of indoleamine 2,3-dioxygenase (IDO) activity vol.39, pp.8, 2017, https://doi.org/10.1080/01616412.2017.1310705
  5. Resveratrol Ameliorates the Depressive-Like Behaviors and Metabolic Abnormalities Induced by Chronic Corticosterone Injection vol.21, pp.10, 2016, https://doi.org/10.3390/molecules21101341
  6. Clinical benefits of green tea consumption for cognitive dysfunction vol.3, pp.4, 2015, https://doi.org/10.1016/j.phanu.2015.07.001
  7. Antidepressant-like and anxiolytic-like effects of hydrogen sulfide in streptozotocin-induced diabetic rats through inhibition of hippocampal oxidative stress vol.26, pp.5, 2015, https://doi.org/10.1097/FBP.0000000000000143
  8. Phytochemical Screening, Antidepressant and Analgesic Effects of Aqueous Extract of Anethum graveolens L. From Southeast of Morocco vol.23, pp.6, 2016, https://doi.org/10.1097/MJT.0000000000000090
  9. Green Tea Consumption Affects Cognitive Dysfunction in the Elderly: A Pilot Study vol.6, pp.10, 2014, https://doi.org/10.3390/nu6104032
  10. Basomedial amygdala mediates top-down control of anxiety and fear vol.527, pp.7577, 2015, https://doi.org/10.1038/nature15698
  11. β-asarone and levodopa coadministration increases striatal levels of dopamine and levodopa and improves behavioral competence in Parkinson's rat by enhancing dopa decarboxylase activity vol.94, 2017, https://doi.org/10.1016/j.biopha.2017.07.125
  12. Camellia euphlebia exerts its antidepressant-like effect via modulation of the hypothalamic-pituitary-adrenal axis and brain monoaminergic systems vol.33, pp.1, 2018, https://doi.org/10.1007/s11011-017-0167-1
  13. Evaluation of antidepressant activity of methanolic extract of Saraca asoca bark in a chronic unpredictable mild stress model vol.29, pp.2, 2018, https://doi.org/10.1097/WNR.0000000000000944
  14. Camellia nitidissima C.W. Chi: a review of botany, chemistry, and pharmacology vol.17, pp.2, 2018, https://doi.org/10.1007/s11101-017-9537-x
  15. Selective vulnerability of dorsal raphe-medial prefrontal cortex projection neurons to corticosterone-induced hypofunction pp.0953816X, 2019, https://doi.org/10.1111/ejn.14355
  16. Anxiolytic effects of theaflavins via dopaminergic activation in the frontal cortex pp.1347-6947, 2019, https://doi.org/10.1080/09168451.2019.1584523
  17. Electroacupuncture and Moxibustion Improved Anxiety Behavior in DSS-Induced Colitis Mice vol.2019, pp.1687-630X, 2019, https://doi.org/10.1155/2019/2345890
  18. Neuroanatomical pathways underlying the effects of hypothalamo-hypophysial-adrenal hormones on exploratory activity vol.28, pp.6, 2013, https://doi.org/10.1515/revneuro-2016-0075
  19. Neuroanatomical pathways underlying the effects of hypothalamo-hypophysial-adrenal hormones on exploratory activity vol.28, pp.6, 2013, https://doi.org/10.1515/revneuro-2016-0075
  20. Hippocampal astrocyte atrophy in a mouse depression model induced by corticosterone is reversed by fluoxetine instead of benzodiazepine diazepam vol.83, pp.None, 2013, https://doi.org/10.1016/j.pnpbp.2018.01.011
  21. (−)-Epigallocatechin-3-gallate protects PC12 cells against corticosterone-induced neurotoxicity via the hedgehog signaling pathway vol.15, pp.5, 2013, https://doi.org/10.3892/etm.2018.5936
  22. The Protective Effects of Green Tea Catechins in the Management of Neurodegenerative Diseases: A Review vol.16, pp.1, 2013, https://doi.org/10.2174/1570163815666180219115453
  23. Antidepressant Effects of the Aqueous and Hydroalcoholic Extracts of Salvia mirzayanii and Salvia macrosiphon in Male Mice vol.21, pp.2, 2013, https://doi.org/10.5812/semj.91276
  24. Assessment of preclinical effect of (+)‐catechin hydrate on sexual function: An in silico and in vivo study vol.52, pp.10, 2013, https://doi.org/10.1111/and.13737
  25. Anxiolytic and Antidepressant-Like Effects of Conyza canadensis Aqueous Extract in the Scopolamine Rat Model vol.10, pp.4, 2021, https://doi.org/10.3390/plants10040645
  26. Pharmacogenetic‐based management of depression: Role of traditional Persian medicine vol.35, pp.9, 2013, https://doi.org/10.1002/ptr.7134
  27. Effects of catechin on a rodent model of autism spectrum disorder: implications for the role of nitric oxide in neuroinflammatory pathway vol.238, pp.11, 2013, https://doi.org/10.1007/s00213-021-05941-5
  28. Chinese Pharmacopoeia Revisited: A Review of Anti-Depression Herbal Sources vol.16, pp.12, 2013, https://doi.org/10.1177/1934578x211059312