References
- Isse T, Ueta Y, Serino R, Noguchi J, Yamamoto Y, Nomura M, et al. Effects of leptin on fasting-induced inhibition of neuronal nitric oxide synthase mRNA in the paraventricular and supraoptic nuclei of rats. Brain Res 1999;846:229-35. https://doi.org/10.1016/S0006-8993(99)02065-X
- Nelson RJ, Kriegsfeld LJ, Dawson VL, Dawson TM. Effect of nitric oxide on neuroendocrine function and behavior. Front Neuroendocrinol 1997;18:463-91. https://doi.org/10.1006/frne.1997.0156
- Watts AG. Understanding the neural control of ingestive behaviors: helping to separate cause from effect with dehydration-associated anorexia. Horm Behav 2000;37:261-83. https://doi.org/10.1006/hbeh.2000.1581
- Antoni FA. Hypothalamic control of adrenocorticotropin secretion: advances since the discovery of 41-residue corticotropin-releasing factor. Endocr Rev 1986;7:351-78. https://doi.org/10.1210/edrv-7-4-351
- Whitnall MH. Regulation of the hypothalamic corticotropin-releasing hormone neurosecretory system. Prog Neurobiol 1993;40:573-629. https://doi.org/10.1016/0301-0082(93)90035-Q
- Kiss A, Jezova D, Aguilera G. Activity of the hypothalamic pituitary adrenal axis and sympathoadrenal system during food and water deprivation in the rat. Brain Res 1994;663:84-92. https://doi.org/10.1016/0006-8993(94)90465-0
- van Haasteren GA, Linkels E, van Toor H, Klootwijk W, Kaptein E, de Jong FH, et al. Effects of long-term food reduction on the hypothalamus-pituitary-thyroid axis in male and female rats. J Endocrinol 1996;150:169-78. https://doi.org/10.1677/joe.0.1500169
- Yoshihara T, Honma S, Katsuno Y, Honma K. Dissociation of paraventricular NPY release and plasma corticosterone levels in rats under food deprivation. Am J Physiol 1996;271:E239-45.
- Kim YM, Lee JY, Choi SH, Kim DG, Jahng JW. RU486 blocks fasting-induced decrease of neuronal nitric oxide synthase in the rat paraventricular nucleus. Brain Res 2004;1018:221-6. https://doi.org/10.1016/j.brainres.2004.05.068
- Timofeeva E, Picard F, Duclos M, Deshaies Y, Richard D. Neuronal activation and corticotropin-releasing hormone expression in the brain of obese (fa/fa) and lean (fa/?) Zucker rats in response to refeeding. Eur J Neurosci 2002;15:1013-29. https://doi.org/10.1046/j.1460-9568.2002.01942.x
- Jahng JW, Lee JY, Yoo SB, Kim YM, Ryu V, Kang DW, et al. Refeeding-induced expression of neuronal nitric oxide synthase in the rat paraventricular nucleus. Brain Res 2005;1048:185-92. https://doi.org/10.1016/j.brainres.2005.04.072
- Fraser KA, Davison JS. Meal-induced c-fos expression in brain stem is not dependent on cholecystokinin release. Am J Physiol 1993;265:R235-9.
- Rinaman L, Baker EA, Hoffman GE, Stricker EM, Verbalis JG. Medullary c-fos activation in rats after ingestion of a satiating meal. Am J Physiol 1998;275:R262-68.
- Fraser KA, Raizada E, Davison JS. Oral-pharyngeal-esophageal and gastric cues contribute to meal-induced c-fos expression. Am J Physiol 1995;268:R223-30.
- Phillips RJ, Powley TL. Gastric volume rather than nutrient content inhibits food intake. Am J Physiol 1996;271:R766-9.
- McCann MJ, Rogers RC. Impact of antral mechanoreceptor activation on the vago-vagal reflex in the rat: functional zonation of responses. J Physiol 1992;453:401-11. https://doi.org/10.1113/jphysiol.1992.sp019235
- Raybould HE, Gayton RJ, Dockray GJ. CNS effects of circulating CCK8: involvement of brainstem neurones responding to gastric distension. Brain Res 1985;342:187-90. https://doi.org/10.1016/0006-8993(85)91373-3
- Harrer MI, Travers SP. Topographic organization of Fos-like immunoreactivity in the rostral nucleus of the solitary tract evoked by gustatory stimulation with sucrose and quinine. Brain Res 1996;711:125-37. https://doi.org/10.1016/0006-8993(95)01410-1
- Norgren R. Gustatory system. In: Paxinos G, ed. The Rat Nervous System. 2nd ed. San Diego: Academic Press; 1995:751- 71.
- Yamamoto T. Electrophysiology of CTA. In: Bures J, Bermudez- Rattoni F, Yamamoto T, eds. Conditioned taste aversion: memory of a special kind. 1st ed. New York: Oxford Univ. Press; 1998: 76-107.
- Pritchard TC, Hamilton RB, Norgren R. Projections of the parabrachial nucleus in the old world monkey. Exp Neurol 2000; 165:101-17. https://doi.org/10.1006/exnr.2000.7450
- Yamamoto T, Matsuo R, Kiyomitsu Y, Kitamura R. Taste responses of cortical neurons in freely ingesting rats. J Neurophysiol 1989;61:1244-58. https://doi.org/10.1152/jn.1989.61.6.1244
- Kobayakawa T, Ogawa H, Kaneda H, Ayabe-Kanamura S, Endo H, Saito S. Spatio-temporal analysis of cortical activity evoked by gustatory stimulation in humans. Chem Senses 1999;24:201-9. https://doi.org/10.1093/chemse/24.2.201
- Bermudez-Rattoni F. Molecular mechanisms of taste-recognition memory. Nat Rev Neurosci 2004;5:209-17. https://doi.org/10.1038/nrn1344
- Tsukamoto G, Adachi A. Neural responses of rat area postrema to stimuli producing nausea. J Auton Nerv Syst 1994;49:55-60.
- Hermann GE, Kohlerman NJ, Rogers RC. Hepatic-vagal and gustatory afferent interactions in the brainstem of the rat. J Auton Nerv Syst 1983;9:477-95. https://doi.org/10.1016/0165-1838(83)90008-5
- Cechetto DF, Saper CB. Evidence for a viscerotopic sensory representation in the cortex and thalamus in the rat. J Comp Neurol 1987;262:27-45. https://doi.org/10.1002/cne.902620104
- Yoo SB, Lee JH, Ryu V, Jahng JW. Ingestion of non-caloric liquid diet is sufficient to restore plasma corticosterone level, but not to induce the hypothalamic c-Fos expression in food-deprived rats. Nutr Neurosci 2007;10:261-7. https://doi.org/10.1080/10284150701723859
- Weingarten HP, Watson SD. Sham feeding as a procedure for assessing the influence of diet palatability on food intake. Physiol Behav 1982;28:401-7. https://doi.org/10.1016/0031-9384(82)90131-7
- Conover KL, Shizgal P. Competition and summation between rewarding effects of sucrose and lateral hypothalamic stimulation in the rat. Behav Neurosci 1994;108:537-48. https://doi.org/10.1037/0735-7044.108.3.537
- Davis JD, Smith JP, Kung TM. Abdominal vagotomy alters the structure of the ingestive behavior of rats ingesting liquid diets. Behav Neurosci 1994;108:767-79. https://doi.org/10.1037/0735-7044.108.4.767
- Nissenbaum JW, Sclafani A. Sham feeding response of rats to polycose and sucrose. Neurosci Biobehav Rev 1987;11:215-22. https://doi.org/10.1016/S0149-7634(87)80029-5
- Emond MH, Weingarten HP. Fos-like immunoreactivity in vagal and hypoglossal nuclei in different feeding states: a quantitative study. Physiol Behav 1995;58:459-65. https://doi.org/10.1016/0031-9384(95)00069-U
- Paxinos G, Watson C. The rat brain in Stereotaxic Coordinates. 2nd ed. San Diego: Academic Press; 1986.
- Ulrich-Lai YM, Ostrander MM, Thomas IM, Packard BA, Furay AR, Dolgas CM, et al. Daily limited access to sweetened drink attenuates hypothalamic-pituitary-adrenocortical axis stress responses. Endocrinology 2007;148:1823-34. https://doi.org/10.1210/en.2006-1241
- Suchecki D, Antunes J, Tufik S. Palatable solutions during paradoxical sleep deprivation: reduction of hypothalamic-pituitaryadrenal axis activity and lack of effect on energy imbalance. J Neuroendocrinol 2003;15:815-21. https://doi.org/10.1046/j.1365-2826.2003.01067.x
- Sclafani A, Nissenbaum JW. On the role of the mouth and gut in the control of saccharin and sugar intake: a reexamination of the sham-feeding preparation. Brain Res Bull 1985;14:569-76. https://doi.org/10.1016/0361-9230(85)90106-6
- Sclafani A, Nissenbaum JW. Is gastric sham feeding really sham feeding? Am J Physiol 1985;248:R387-90.
- Grill HJ, Norgren R. The taste reactivity test. I. Mimetic responses to gustatory stimuli in neurologically normal rats. Brain Res 1978;143:263-79. https://doi.org/10.1016/0006-8993(78)90568-1
- Berridge KC. Modulation of taste affect by hunger, caloric satiety, and sensory-specific satiety in the rat. Appetite 1991;16:103-20. https://doi.org/10.1016/0195-6663(91)90036-R
- Wacker J, Dillon DG, Pizzagalli DA. The role of the nucleus accumbens and rostral anterior cingulate cortex in anhedonia: integration of resting EEG, fMRI, and volumetric techniques. Neuroimage 2009;46:327-37. https://doi.org/10.1016/j.neuroimage.2009.01.058
- Pizzagalli DA, Holmes AJ, Dillon DG, Goetz EL, Birk JL, Bogdan R, et al. Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder. Am J Psychiatry 2009;166:702-10. https://doi.org/10.1176/appi.ajp.2008.08081201
- Shirayama Y, Chaki S. Neurochemistry of the nucleus accumbens and its relevance to depression and antidepressant action in rodents. Curr Neuropharmacol 2006;4:277-91. https://doi.org/10.2174/157015906778520773
- Bruchas MR, Xu M, Chavkin C. Repeated swim stress induces kappa opioid-mediated activation of extracellular signal-regulated kinase 1/2. Neuroreport 2008;19:1417-22. https://doi.org/10.1097/WNR.0b013e32830dd655
- Kalivas PW, Duffy P. Selective activation of dopamine transmission in the shell of the nucleus accumbens by stress. Brain Res 1995;675:325-8. https://doi.org/10.1016/0006-8993(95)00013-G
- Campioni MR, Xu M, McGehee DS. Stress-induced changes in nucleus accumbens glutamate synaptic plasticity. J Neurophysiol 2009;101:3192-8. https://doi.org/10.1152/jn.91111.2008
- Lucas LR, Wang CJ, McCall TJ, McEwen BS. Effects of immobilization stress on neurochemical markers in the motivational system of the male rat. Brain Res 2007;1155:108-15. https://doi.org/10.1016/j.brainres.2007.04.063
- Naimi N, Rivest S, Racotta I, Richard D. Neuronal activation of the hypothalamic magnocellular system in response to oropharyngeal stimuli in the rat. J Neuroendocrinol 1997;9:329-40.
- Berthoud HR. Multiple neural systems controlling food intake and body weight. Neurosci Biobehav Rev 2002;26:393-428. https://doi.org/10.1016/S0149-7634(02)00014-3
- Yamamoto T, Sawa K. Comparison of c-fos-like immunoreactivity in the brainstem following intraoral and intragastric infusions of chemical solutions in the rats. Brain Res 2000;866:144-51. https://doi.org/10.1016/S0006-8993(00)02242-3