• 제목/요약/키워드: Hypergeometric series

검색결과 151건 처리시간 0.018초

An Identity Involving Product of Generalized Hypergeometric Series 2F2

  • Kim, Yong Sup;Choi, Junesang;Rathie, Arjun Kumar
    • Kyungpook Mathematical Journal
    • /
    • 제59권2호
    • /
    • pp.293-299
    • /
    • 2019
  • A number of identities associated with the product of generalized hypergeometric series have been investigated. In this paper, we aim to establish an identity involving the product of the generalized hypergeometric series $_2F_2$. We do this using the generalized Kummer-type II transformation due to Rathie and Pogany and another identity due to Bailey. The result presented here, being general, can be reduced to a number of relatively simple identities involving the product of generalized hypergeometric series, some of which are observed to correspond to known ones.

CERTAIN NEW WP-BAILEY PAIRS AND BASIC HYPERGEOMETRIC SERIES IDENTITIES

  • Ali, S. Ahmad;Rizvi, Sayyad Nadeem Hasan
    • 대한수학회논문집
    • /
    • 제32권4호
    • /
    • pp.885-898
    • /
    • 2017
  • The Bailey lemma has been a powerful tool in the discovery of identities of Rogers-Ramanujan type and also ordinary and basic hyper-geometric series identities. The mechanism of Bailey lemma has also led to the concepts of Bailey pair and Bailey chain. In the present work certain new WP-Bailey pairs have been established. We also have deduced a number of basic hypergeometric series identities as an application of new WP-Bailey pairs.

INTEGRAL REPRESENTATIONS FOR SRIVASTAVA'S HYPERGEOMETRIC FUNCTION HA

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • 호남수학학술지
    • /
    • 제34권1호
    • /
    • pp.113-124
    • /
    • 2012
  • While investigating the Lauricella's list of 14 complete second-order hypergeometric series in three variables, Srivastava noticed the existence of three additional complete triple hypergeometric series of the second order, which were denoted by $H_A$, $H_B$ and $H_C$. Each of these three triple hypergeometric functions $H_A$, $H_B$ and $H_C$ has been investigated extensively in many different ways including, for example, in the problem of finding their integral representations of one kind or the other. Here, in this paper, we aim at presenting further integral representations for the Srivatava's triple hypergeometric function $H_A$.

INTEGRAL REPRESENTATIONS FOR SRIVASTAVA'S HYPERGEOMETRIC FUNCTION HB

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제19권2호
    • /
    • pp.137-145
    • /
    • 2012
  • While investigating the Lauricella's list of 14 complete second-order hypergeometric series in three variables, Srivastava noticed the existence of three additional complete triple hypergeometric series of the second order, which were denoted by $H_A$, $H_B$ and $H_C$. Each of these three triple hypergeometric functions $H_A$, $H_B$ and $H_C$ has been investigated extensively in many different ways including, for example, in the problem of finding their integral representations of one kind or the other. Here, in this paper, we aim at presenting further integral representations for the Srivatava's triple hypergeometric function $H_B$.

REMARKS ON A SUMMATION FORMULA FOR THREE-VARIABLES HYPERGEOMETRIC FUNCTION $X_8$ AND CERTAIN HYPERGEOMETRIC TRANSFORMATIONS

  • Choi, June-Sang;Rathie, Arjun K.;Harsh, H.
    • East Asian mathematical journal
    • /
    • 제25권4호
    • /
    • pp.481-486
    • /
    • 2009
  • The first object of this note is to show that a summation formula due to Padmanabham for three-variables hypergeometric function $X_8$ introduced by Exton can be proved in a different (from Padmanabham's and his observation) yet, in a sense, conventional method, which has been employed in obtaining a variety of identities associated with hypergeometric series. The second purpose is to point out that one of two seemingly new hypergeometric identities due to Exton was already recorded and the other one is easily derivable from the first one. A corrected and a little more compact form of a general transform involving hypergeometric functions due to Exton is also given.

A POWER SERIES ASSOCIATED WITH THE GENERALIZED HYPERGEOMETRIC FUNCTIONS WITH THE UNIT ARGUMENT WHICH ARE INVOLVED IN BELL POLYNOMIALS

  • Choi, Junesang;Qureshi, Mohd Idris;Majid, Javid;Ara, Jahan
    • Nonlinear Functional Analysis and Applications
    • /
    • 제27권1호
    • /
    • pp.169-187
    • /
    • 2022
  • There have been provided a surprisingly large number of summation formulae for generalized hypergeometric functions and series incorporating a variety of elementary and special functions in their various combinations. In this paper, we aim to consider certain generalized hypergeometric function 3F2 with particular arguments, through which a number of summation formulas for p+1Fp(1) are provided. We then establish a power series whose coefficients are involved in generalized hypergeometric functions with unit argument. Also, we demonstrate that the generalized hypergeometric functions with unit argument mentioned before may be expressed in terms of Bell polynomials. Further, we explore several special instances of our primary identities, among numerous others, and raise a problem that naturally emerges throughout the course of this investigation.

Reduction Formulas for Srivastava's Triple Hypergeometric Series F(3)[x, y, z]

  • CHOI, JUNESANG;WANG, XIAOXIA;RATHIE, ARJUN K.
    • Kyungpook Mathematical Journal
    • /
    • 제55권2호
    • /
    • pp.439-447
    • /
    • 2015
  • Very recently the authors have obtained a very interesting reduction formula for the Srivastava's triple hypergeometric series $F^{(3)}$(x, y, z) by applying the so-called Beta integral method to the Henrici's triple product formula for the hypergeometric series. In this sequel, we also present three more interesting reduction formulas for the function $F^{(3)}$(x, y, z) by using the well known identities due to Bailey and Ramanujan. The results established here are simple, easily derived and (potentially) useful.

A NOTE ON GENERALIZATIONS OF BAILEY'S IDENTITY INVOLVING PRODUCTS OF GENERALIZED HYPERGEOMETRIC SERIES

  • Kilicman, Adem;Kurumujji, Shantha Kumari;Rathie, Arjun K.
    • 대한수학회논문집
    • /
    • 제37권2호
    • /
    • pp.575-583
    • /
    • 2022
  • In the theory of hypergeometric and generalized hypergeometric series, the well-known and very useful identity due to Bailey (which is a generalization of the Preece's identity) plays an important role. The aim of this research paper is to provide generalizations of Bailey's identity involving products of generalized hypergeometric series in the most general form. A few known, as well as new results, have also been obtained as special cases of our main findings.

A REDUCIBILITY OF SRIVASTAVA'S TRIPLE HYPERGEOMETRIC SERIES F(3)[x, y, z]

  • Choi, Junesang;Wang, Xiaoxia;Rathie, Arjun K.
    • 대한수학회논문집
    • /
    • 제28권2호
    • /
    • pp.297-301
    • /
    • 2013
  • When certain general single or multiple hypergeometric functions were introduced, their reduction formulas have naturally been investigated. Here, in this paper, we aim at presenting a very interesting reduction formula for the Srivastava's triple hypergeometric function $F^{(3)}[x,y,z]$ by applying the so-called Beta integral method to the Henrici's triple product formula for hypergeometric series.

THREE-TERM CONTIGUOUS FUNCTIONAL RELATIONS FOR BASIC HYPERGEOMETRIC SERIES 2φ1

  • KIM, YONG-SUP;RATHIE ARJUN K.;CHOI, JUNE-SANG
    • 대한수학회논문집
    • /
    • 제20권2호
    • /
    • pp.395-403
    • /
    • 2005
  • The authors aim mainly at giving fifteen three-term contiguous relations for the basic hypergeometric series $series\;_2{\phi}_1$ corresponding to Gauss's contiguous relations for the hypergeometric series $series\;_2F_1$ given in Rainville([6], p.71). They also apply them to obtain two summation formulas closely related to a known q-analogue of Kummer's theorem.