DOI QR코드

DOI QR Code

Reduction Formulas for Srivastava's Triple Hypergeometric Series F(3)[x, y, z]

  • CHOI, JUNESANG (Department of Mathematics, Dongguk University) ;
  • WANG, XIAOXIA (Department of Mathematics, Shanghai University) ;
  • RATHIE, ARJUN K. (Department of Mathematics, School of Mathematical & Physical Sciences, Central University of Kerala, Riverside Transit Campus)
  • Received : 2013.06.21
  • Accepted : 2013.11.04
  • Published : 2015.06.23

Abstract

Very recently the authors have obtained a very interesting reduction formula for the Srivastava's triple hypergeometric series $F^{(3)}$(x, y, z) by applying the so-called Beta integral method to the Henrici's triple product formula for the hypergeometric series. In this sequel, we also present three more interesting reduction formulas for the function $F^{(3)}$(x, y, z) by using the well known identities due to Bailey and Ramanujan. The results established here are simple, easily derived and (potentially) useful.

Keywords

References

  1. P. Appell and J. Kampe de Feriet, Fonctions Hypergeometriques et Hyperspheriques; Polynomes d'Hermite, Gauthier - Villars, Paris, 1926.
  2. W. N. Bailey, Products of generalized hypergeometric series, Proc. London Math. Soc., ser 2, 28(1928), 242-254.
  3. W. N. Bailey, Generalized Hypergeometric Series, Cambridge Tracts in Mathematics and Mathematical Physics, 32, Cambridge University Press, Cambridge, London and New York, 1935; Reprinted by Stechert-Hafner Service Agency, New York and London, 1964.
  4. J. L. Burchnall and T. W. Chaundy, Expansions of Appell's double hypergeometric functions II, Quart. J. Math. (Oxford ser.), 11(1940), 249-270.
  5. J. L. Burchnall and T. W. Chaundy, Expansions of Appell's double hypergeometric functions, Quart. J. Math. (Oxford ser.), 12(1941), 112-128.
  6. J. Choi, A. K. Rathie and H. M. Srivastava, Certain hypergeometric identities deducible by using the Beta integral method, Bull. Korean Math. Soc., 50(2013), 1673-1681. https://doi.org/10.4134/BKMS.2013.50.5.1673
  7. J. Choi, X.Wang and A. K. Rathie, A reducibility of Srivastava's triple hypergeometric series $F^{(3)}$[x, y, z], Commun. Korean Math. Soc., 28(2)(2013), 297-301. https://doi.org/10.4134/CKMS.2013.28.2.297
  8. P. Henrici, A triple product theorem for hypergeometric series, SIAM J. Math. Anal., 18(1987), 1513-1518. https://doi.org/10.1137/0518108
  9. P. W. Karlsson and H. M. Srivastava, A note of Henrici's triple product theorem, Proc. Amer. Math. Soc., 110(1990), 85-88.
  10. C. Krattenthaler and K. S. Rao, Automatic generation of hypergeometric identities by the beta integral method, J. Comput. Appl. Math., 160(2003), 159-173. https://doi.org/10.1016/S0377-0427(03)00629-0
  11. M. A. Pathan, M. I. Qureshi and F. V. Khan, Reducibility of Kampe de Feriet's hypergeometric series of higher order, Serdica, 2(1985), 20-24.
  12. E. D. Rainville, Special Functions, Macmillan Company, New York, 1960; Reprinted by Chelsea Publishing Company, Bronx, New York, 1971.
  13. S. Ramanujan, Notebooks, 1 and 2, TIFR, Bombay, 1957.
  14. H. M. Srivastava, Generalized Neumann expansions involving hypergeometric functions, Proc. Cambridge Philos. Soc., 63(1967), 425-429. https://doi.org/10.1017/S0305004100041359
  15. H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.
  16. H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985.
  17. H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), Wiley, New York, Chichester, Brisbane, and Toronto, 1984.
  18. H. M. Srivastava and R. Panda, An integral representation for the product of two Jacobi polynomials, J. London Math. Soc., 12(2)(1976), 419-425.