• 제목/요약/키워드: Hypergeometric functions

검색결과 210건 처리시간 0.021초

CERTAIN UNIFIED INTEGRALS INVOLVING A PRODUCT OF BESSEL FUNCTIONS OF THE FIRST KIND

  • Choi, Junesang;Agarwal, Praveen
    • 호남수학학술지
    • /
    • 제35권4호
    • /
    • pp.667-677
    • /
    • 2013
  • A remarkably large number of integrals involving a product of certain combinations of Bessel functions of several kinds as well as Bessel functions, themselves, have been investigated by many authors. Motivated the works of both Garg and Mittal and Ali, very recently, Choi and Agarwal gave two interesting unified integrals involving the Bessel function of the first kind $J_{\nu}(z)$. In the present sequel to the aforementioned investigations and some of the earlier works listed in the reference, we present two generalized integral formulas involving a product of Bessel functions of the first kind, which are expressed in terms of the generalized Lauricella series due to Srivastava and Daoust. Some interesting special cases and (potential) usefulness of our main results are also considered and remarked, respectively.

FRACTIONAL CALCULUS OPERATORS AND THEIR IMAGE FORMULAS

  • Agarwal, Praveen;Choi, Junesang
    • 대한수학회지
    • /
    • 제53권5호
    • /
    • pp.1183-1210
    • /
    • 2016
  • During the past four decades or so, due mainly to a wide range of applications from natural sciences to social sciences, the so-called fractional calculus has attracted an enormous attention of a large number of researchers. Many fractional calculus operators, especially, involving various special functions, have been extensively investigated and widely applied. Here, in this paper, in a systematic manner, we aim to establish certain image formulas of various fractional integral operators involving diverse types of generalized hypergeometric functions, which are mainly expressed in terms of Hadamard product. Some interesting special cases of our main results are also considered and relevant connections of some results presented here with those earlier ones are also pointed out.

Generalization of a Transformation Formula for the Exton's Triple Hypergeometric Series X12 and X17

  • Choi, Junesang;Rathie, Arjun K.
    • Kyungpook Mathematical Journal
    • /
    • 제54권4호
    • /
    • pp.677-684
    • /
    • 2014
  • In the theory of hypergeometric functions of one or several variables, a remarkable amount of mathematicians's concern has been given to develop their transformation formulas and summation identities. Here we aim at generalizing the following transformation formula for the Exton's triple hypergeometric series $X_{12}$ and $X_{17}$: $$(1+2z)^{-b}X_{17}\;\left(a,b,c_3;\;c_1,c_2,2c_3;\;x,{\frac{y}{1+2z}},{\frac{4z}{1+2z}}\right)\\{\hfill{53}}=X_{12}\;\left(a,b;\;c_1,c_2,c_3+{\frac{1}{2}};\;x,y,z^2\right).$$ The results are derived with the help of two general hypergeometric identities for the terminating $_2F_1(2)$ series which were very recently obtained by Kim et al. Four interesting results closely related to the Exton's transformation formula are also chosen, among ten, to be derived as special illustrative cases of our main findings. The results easily obtained in this paper are simple and (potentially) useful.

INEQUALITIES OF EXTENDED (p, q)-BETA AND CONFLUENT HYPERGEOMETRIC FUNCTIONS

  • Mubeen, Shahid;Nisar, Kottakkaran Sooppy;Rahman, Gauhar;Arshad, Muhammad
    • 호남수학학술지
    • /
    • 제41권4호
    • /
    • pp.745-756
    • /
    • 2019
  • In this paper, we establish the log convexity and Turán type inequalities of extended (p, q)-beta functions. Likewise, we present the log-convexity, the monotonicity and Turán type inequalities for extended (p, q)-confluent hypergeometric function by utilizing the inequalities of extended (p, q)-beta functions.

HYPERGEOMETRIC FUNCTIONS AND EICHLER INTEGRALS

  • Lim, Su-Bong
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제12권4호
    • /
    • pp.223-226
    • /
    • 2008
  • Duke and Imamo$\bar{g}$lu express the Eichler integrals associated to modular forms of weight 3 in terms of generalized hypergeometric functions. We extend this result to most general modular forms of weight 3.

  • PDF

The Incomplete Lauricella Functions of Several Variables and Associated Properties and Formulas

  • Choi, Junesang;Parmar, Rakesh K.;Srivastava, H.M.
    • Kyungpook Mathematical Journal
    • /
    • 제58권1호
    • /
    • pp.19-35
    • /
    • 2018
  • Motivated mainly by certain interesting recent extensions of the generalized hypergeometric function [30] and the second Appell function [6], we introduce here the incomplete Lauricella functions ${\gamma}^{(n)}_A$ and ${\Gamma}^{(n)}_A$ of n variables. We then systematically investigate several properties of each of these incomplete Lauricella functions including, for example, their various integral representations, finite summation formulas, transformation and derivative formulas, and so on. We provide relevant connections of some of the special cases of the main results presented here with known identities. Several potential areas of application of the incomplete hypergeometric functions in one and more variables are also pointed out.

DECOMPOSITION FORMULAS FOR THE GENERALIZID HYPERGEOMETRIC 4F3 FUNCTION

  • Hasanov, Anvar;Turaev, Mamasali;Choi, June-Sang
    • 호남수학학술지
    • /
    • 제32권1호
    • /
    • pp.1-16
    • /
    • 2010
  • By using the generalized operator method given by Burchnall and Chaundy in 1940, the authors present one-dimensional inverse pairs of symbolic operators. Many operator identities involving these pairs of symbolic operators are rst constructed. By means of these operator identities, 11 decomposition formulas for the generalized hypergeometric $_4F_3$ function are then given. Furthermore, the integral representations associated with generalized hypergeometric functions are also presented.

NEW CLASS OF INTEGRALS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTION AND THE LOGARITHMIC FUNCTION

  • Kim, Yongsup
    • 대한수학회논문집
    • /
    • 제31권2호
    • /
    • pp.329-342
    • /
    • 2016
  • Motivated essentially by Brychkov's work [1], we evaluate some new integrals involving hypergeometric function and the logarithmic function (including those obtained by Brychkov[1], Choi and Rathie [3]), which are expressed explicitly in terms of Gamma, Psi and Hurwitz zeta functions suitable for numerical computations.

AN EXTENSION OF THE BETA FUNCTION EXPRESSED AS A COMBINATION OF CONFLUENT HYPERGEOMETRIC FUNCTIONS

  • Marfaing, Olivier
    • 호남수학학술지
    • /
    • 제43권2호
    • /
    • pp.183-197
    • /
    • 2021
  • Recently several authors have extended the Beta function by using its integral representation. However, in many cases no expression of these extended functions in terms of classic special functions is known. In the present paper, we introduce a further extension by defining a family of functions Gr,s : ℝ*+ → ℂ, with r, s ∈ ℂ and ℜ(r) > 0. For given r, s, we prove that this function satisfies a second-order linear differential equation with rational coefficients. Solving this ODE, we express Gr,s as a combination of confluent hypergeometric functions. From this we deduce a new integral relation satisfied by Tricomi's function. We then investigate additional specific properties of Gr,1 which take the form of new non trivial integral relations involving exponential and error functions. We discuss the connection between Gr,1 and Stokes' first problem (or Rayleigh problem) in fluid mechanics which consists in determining the flow created by the movement of an infinitely long plate. For $r{\in}{\frac{1}{2}}{\mathbb{N}}^*$, we find additional relations between Gr,1 and Hermite polynomials. In view of these results, we believe the family of extended beta functions Gr,s will find further applications in two directions: (i) for improving our knowledge of confluent hypergeometric functions and Tricomi's function, (ii) and for engineering and physics problems.