• Title/Summary/Keyword: Hyperbolic metric

Search Result 39, Processing Time 0.027 seconds

SOME REMARKS ON THURSTON METRIC AND HYPERBOLIC METRIC

  • Sun, Zongliang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.399-410
    • /
    • 2016
  • In this paper, we study the relations between the Thurston metric and the hyperbolic metric on a closed surface of genus $g{\geq}2$. We show a rigidity result which says if there is an inequality between the marked length spectra of these two metrics, then they are isotopic. We obtain some inequalities on length comparisons between these metrics. Besides, we show certain distance distortions under conformal graftings, with respect to the $Teichm{\ddot{u}}ller$ metric, the length spectrum metric and Thurston's asymmetric metrics.

A GENERALIZED HURWITZ METRIC

  • Arstu, Arstu;Sahoo, Swadesh Kumar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1127-1142
    • /
    • 2020
  • In 2016, the Hurwitz metric was introduced by D. Minda in arbitrary proper subdomains of the complex plane and he proved that this metric coincides with the Poincaré's hyperbolic metric when the domains are simply connected. In this paper, we provide an alternate definition of the Hurwitz metric through which we could define a generalized Hurwitz metric in arbitrary subdomains of the complex plane. This paper mainly highlights various important properties of the Hurwitz metric and the generalized metric including the situations where they coincide with each other.

THE LOWER BOUNDS FOR THE HYPERBOLIC METRIC ON BLOCH REGIONS

  • An, Jong Su
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.203-210
    • /
    • 2007
  • Let X be a hyperbolic region in the complex plane C such that the hyperbolic metrix ${\lambda}_X(w){\mid}dw{\mid}$ exists. Let $R(X)=sup\{{\delta}_X(w):w{\in}X\}$ where ${\delta}_X(w)$ is the euclidean distance from w to ${\partial}X$. Here ${\partial}X$ is the boundary of X. A hyperbolic region X is called a Bloch region if R(X) < ${\infty}$. In this paper, we obtain lower bounds for the hyperbolic metric on Bloch regions in terms of the distance to the boundary.

  • PDF

THE HYPERBOLIC METRIC ON K-CONVEX REGIONS

  • Song, Tai-Sung
    • The Pure and Applied Mathematics
    • /
    • v.5 no.2
    • /
    • pp.87-93
    • /
    • 1998
  • Mejia and Minda proved that if a hyperbolic simply connected region $\Omega$ is k-convex, then (equation omitted), $z \in \Omega$. We show that this inequality actually characterizes k-convex regions.

  • PDF

QUASI-ISOMETRIC AND WEAKLY QUASISYMMETRIC MAPS BETWEEN LOCALLY COMPACT NON-COMPLETE METRIC SPACES

  • Wang, Xiantao;Zhou, Qingshan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.967-970
    • /
    • 2018
  • The aim of this paper is to show that there exists a weakly quasisymmetric homeomorphism $f:(X,d){\rightarrow}(Y,d^{\prime})$ between two locally compact non-complete metric spaces such that $f:(X,d_h){\rightarrow}(Y,d^{\prime}_h)$ is not quasi-isometric, where dh denotes the Gromov hyperbolic metric with respect to the metric d introduced by Ibragimov in 2011. This result shows that the answer to the related question asked by Ibragimov in 2013 is negative.

METRIC FOLIATIONS ON HYPERBOLIC SPACES

  • Lee, Kyung-Bai;Yi, Seung-Hun
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.63-82
    • /
    • 2011
  • On the hyperbolic space $D^n$, codimension-one totally geodesic foliations of class $C^k$ are classified. Except for the unique parabolic homogeneous foliation, the set of all such foliations is in one-one correspondence (up to isometry) with the set of all functions z : [0, $\pi$] $\rightarrow$ $S^{n-1}$ of class $C^{k-1}$ with z(0) = $e_1$ = z($\pi$) satisfying |z'(r)| ${\leq}1$ for all r, modulo an isometric action by O(n-1) ${\times}\mathbb{R}{\times}\mathbb{Z}_2$. Since 1-dimensional metric foliations on $D^n$ are always either homogeneous or flat (that is, their orthogonal distributions are integrable), this classifies all 1-dimensional metric foliations as well. Equations of leaves for a non-trivial family of metric foliations on $D^2$ (called "fifth-line") are found.

SCALAR CURVATURE DECREASE FROM A HYPERBOLIC METRIC

  • Kang, Yutae;Kim, Jongsu
    • The Pure and Applied Mathematics
    • /
    • v.20 no.4
    • /
    • pp.269-276
    • /
    • 2013
  • We find an explicit $C^{\infty}$-continuous path of Riemannian metrics $g_t$ on the 4-d hyperbolic space $\mathbb{H}^4$, for $0{\leq}t{\leq}{\varepsilon}$ for some number ${\varepsilon}$ > 0 with the following property: $g_0$ is the hyperbolic metric on $\mathbb{H}^4$, the scalar curvatures of $g_t$ are strictly decreasing in t in an open ball and $g_t$ is isometric to the hyperbolic metric in the complement of the ball.

CONVERGENCE THEOREMS FOR SP-ITERATION SCHEME IN A ORDERED HYPERBOLIC METRIC SPACE

  • Aggarwal, Sajan;Uddin, Izhar;Mujahid, Samad
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.5
    • /
    • pp.961-969
    • /
    • 2021
  • In this paper, we study the ∆-convergence and strong convergence of SP-iteration scheme involving a nonexpansive mapping in partially ordered hyperbolic metric spaces. Also, we give an example to support our main result and compare SP-iteration scheme with the Mann iteration and Ishikawa iteration scheme. Thus, we generalize many previous results.