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THE CONVEX HULL OF THREE BOUNDARY POINTS IN

COMPLEX HYPERBOLIC SPACE

Youngju Kim

Abstract. The convex hull of a generic triple of boundary points has

non-zero finite volume in complex hyperbolic 2-space.

1. Introduction

In hyperbolic space, the convex hull C(p1, . . . , pn) of boundary points p1, . . . ,
pn is the smallest geodesically convex set whose closure contains p1, . . . , pn.
For example, the convex hull C(p1, p2) of two boundary points p1 and p2 is the
geodesic connecting p1 and p2. For three boundary points p1, p2, p3 of real
hyperbolic n-space HnR (n ≥ 2), the convex hull C(p1, p2, p3) is the ideal triangle
whose vertices are p1, p2, p3. It is embedded in a 2-dimensional totally geodesic
subspace. Since the isometry group acts triply transitively on the boundary at
infinity of HnR, convex hulls of three boundary points are all isometric to each
other. However, in complex hyperbolic space HnC, the shape of the convex hull
of three boundary points becomes very mysterious. Here, we investigate the
convex hull of three boundary points in complex hyperbolic 2-space H2

C.
A triple P = (p1, p2, p3) of distinct boundary points in ∂H2

C is parameterized
by the Cartan angular invariant A(P ) which has the following properties [1].

• −π2 ≤ A(P ) ≤ π
2 .

• A(P ) = 0⇔ p1, p2, p3 lie on the boundary of a Lagrangian plane.
• A(P ) = ±π2 ⇔ p1, p2, p3 lie on the boundary of a complex line.

For two triples of boundary points P and Q,

• A(P ) = A(Q)⇔ g(P ) = Q for a holomorphic isometry g of H2
C.

• A(P ) = −A(Q) ⇔ h(P ) = Q for an anti-holomorphic isometry h of
H2

C.
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Hence, up to the action of the group of holomorphic isometries PU(2, 1), there
is a 1-dimensional parameter space [−π2 ,

π
2 ] of the set of all triples of distinct

boundary points in ∂H2
C. In what follows, we will prove that the convex hull

C(p1, p2, p3) of a generic triple (p1, p2, p3) has non-zero finite volume.

2. Complex hyperbolic space and the boundary at infinity

We refer to [2] and [4] for the basics of complex hyperbolic geometry.

2.1. Complex hyperbolic space and the boundary at infinity

Let C2,1 be the three dimensional complex vector space C3 with the Her-
mitian form of signature (2, 1) given by

(1) 〈z,w〉 = w∗Jz = z1w1 + z2w2 − z3w3,

where the Hermitian matrix J is
(

1 0 0
0 1 0
0 0 −1

)
. Let V− and V0 be the set of negative

vectors and null vectors respectively:

V− = {z ∈ C2,1 : 〈z, z〉 < 0},
V0 = {z ∈ C2,1 \ {0} : 〈z, z〉 = 0}.

(2)

Let P : C2,1 \ {0} → CP2 be the canonical projection onto complex projective
space. Then the complex hyperbolic 2-space H2

C is defined to be PV− and
the boundary at infinity ∂H2

C to be PV0. Considering the section defined by
z3 = 1, we obtain the ball model of complex hyperbolic 2-space. For any
z = (z1, z2) ∈ C2, we lift the point z to z = (z1, z2, 1) ∈ C2,1, called the
standard lift of z. Then 〈z, z〉 = |z1|2 + |z2|2 − 1. Hence the ball model of
complex hyperbolic 2-space is

H2
C = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 < 1}

and its boundary at infinity is

∂H2
C = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1}.

The Bergman metric ρ on H2
C is defined by

(3) cosh2

(
ρ(z, w)

2

)
=
〈z,w〉 〈w, z〉
〈z, z〉 〈w,w〉

,

where z and w are the standard lifts of z and w ∈ H2
C . Let SU(2, 1) be the

group of unitary matrices which preserve the given Hermitian form with the
determinant 1. Then the group of holomorphic isometries of H2

C is PU(2, 1) =

SU(2, 1)/{I, ωI, ω2I}, where ω = (−1 + i
√

3)/2 is a cube root of unity.
Let p and q be distinct boundary points of H2

C and p̃, q̃ ∈ V0 the lifts of p

and q, respectively, with 〈p̃, q̃〉 = −1. Then P(e
t
2 p̃+ e−

t
2 q̃) ∈ H2

C (t ∈ R) is the
geodesic connecting p and q.
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2.2. Cartan angular invariant

Consider a triple of distinct boundary points (p1, p2, p3) in ∂H2
C. Then the

Cartan angular invariant of (p1, p2, p3) is defined as

A(p1, p2, p3) = arg(−〈p̃1, p̃2〉〈p̃2, p̃3〉〈p̃3, p̃1〉),

where p̃i ∈ C2,1 is a lift of pi (i = 1, 2, 3). The argument of the Hermitian triple
product does not depend on the chosen lifts because

〈λ1p̃1, λ2p̃2〉〈λ2p̃2, λ3p̃3〉〈λ3p̃3, λ1p̃1〉 = |λ1|2|λ2|2|λ3|2〈p̃1, p̃2〉〈p̃2, p̃3〉〈p̃3, p̃1〉

for λi ∈ C∗ (i = 1, 2, 3).
Geometrically, the Cartan angular invariant can be seen as follows: Let L

be the unique complex line spanned by p1, p2 and Π : H2
C → L the orthogonal

projection onto L. Then the Cartan angular invariant is the half of the signed
area of the geodesic triangle whose vertices are p1, p2 and Π(p3):

A(p1, p2, p3) =
1

2
Area(4(p1, p2,Π(p3))).

If (p1, p2, p3) lies on the boundary of a Lagrangian plane R, the projection Π(p3)
belongs to the geodesic connecting p1 and p2. Thus the area of 4(p1, p2,Π(p3))
is 0 and A(p1, p2, p3) = 0.

If (p1, p2, p3) lies on the boundary of a complex line, the projection Π(p3) =
p3 is a boundary point of the complex line L. Thus 4(p1, p2,Π(p3)) is an ideal
triangle whose area is ±π where the sign depends on the orientation of p1, p2, p3
along the boundary of the complex line L. Thus A(p1, p2, p3) = ±π2 .

Complex hyperbolic 2-space H2
C has no co-dimension 1 totally geodesic sub-

spaces. Lagrangian planes and complex lines are the only 2-dimensional totally
geodesic subspaces of H2

C. If a triple (p1, p2, p3) belongs to the boundary of a
Lagrangian plane or a complex line, i.e., A(p1, p2, p3) = 0 or ±π2 respectively,
the convex hull C(p1, p2, p3) is an ideal triangle embedded in the Lagrangian
plane or the complex line respectively in H2

C. Thus the volume of C(p1, p2, p3)
is 0 in complex hyperbolic 2-space H2

C. We will call a triple (p1, p2, p3) with the
Cartan angular invariant A(p1, p2, p3) 6= 0,±π2 generic. In the next section, we
will investigate the convex hull of a generic triple.

3. Convex hull

Let (p1, p2, p3) be a generic triple of boundary points in ∂H2
C, i.e.,

A(p1, p2, p3) 6= 0,±π2 . Applying isometries if necessary, we may assume that

p1 = (1, 0), p2 = (−1, 0), p3 =
(

vi
−2+vi ,

2
−2+vi

)
for v = tanA(p1, p2, p3) ∈

R− {0}. Let C = C(p1, p2, p3) be the convex hull of the triple (p1, p2, p3). Let
γi (i = 1, 2, 3) be a geodesic between the boundary points as in Figure 1.
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Figure 1. Three geodesic in the convex hull C(p1, p2, p3)

For the geodesic γ1(t) between p2 and p3, let p̃2 =
(−1

0
1

)
and p̃3 = 2−vi

2−2vip3 =( −vi
2−2vi
−2

2−2vi
2−vi
2−2vi

)
be the lifts of p2 and p3, respectively. Then 〈p̃2, p̃3〉 = −1 and

e
t
2 p̃2 + e−

t
2 p̃3 =

−e
t
2 − e− t

2
vi

2−2vi
−e− t

2
2

2−2vi
e

t
2 + e−

t
2

2−vi
2−2vi

 .

We normalized it such that the third coordinate becomes 1, to obtain the
geodesic

(4) γ1(t) =

(
−et(2− 2vi)− vi
et(2− 2vi) + 2− vi

,
−2

et(2− 2vi) + 2− vi

)
.

Similarly, for the geodesic γ2(t) between p1 and p3, we choose the lifts p̃1 =(
1
0
1

)
and ˜̃p3 =

( −vi
2
−1

2−vi
2

)
of p1 and p3, respectively. Then

e
t
2 p̃1 + e−

t
2 ˜̃p3 =

 e
t
2 − e− t

2
vi
2

−e− t
2

e
t
2 + e−

t
2
2−vi
2


gives us the geodesic

(5) γ2(t) =

(
2et − vi

2et + 2− vi
,

−2

2et + 2− vi

)
.
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Lastly, for the geodesic γ3(t) between p1 and p2, we choose the lifts p̃1 =
(

1
0
1

)
and ˜̃p2 =

(
− 1

2
0
1
2

)
of p1 and p2, respectively. Then

e
t
2 p̃1 + e−

t
2 ˜̃p2 =

e
t
2 − e−

t
2

2
0

e
t
2 + e−

t
2

2


projects to the geodesic

(6) γ3(x) = (x, 0)

for −1 ≤ x ≤ 1.

Theorem 3.1. The convex hull C of a generic triple has non-zero volume in
complex hyperbolic space.

Figure 2. Points in the convex hull C

Proof. The geodesic γ3(x) passes (0, 0) ∈ C2 when x = 0. Thus the convex hull
C contains (0, 0). Now we will find four points q1, q2, q3, q4 ∈ C and show that
the four points have real rank 4 in C2.

First, we choose q1, q2 and q3 as follows (see Figure 2)

q1 = γ1(0) =

(
−2 + vi

4− 3vi
,
−2

4− 3vi

)
,

q2 = γ2(ln 2) =

(
4− vi
6− vi

,
−2

6− vi

)
,

q3 = γ3

(
1

2

)
=

(
1

2
, 0

)
,
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where γ1, γ2, γ3 are the geodesic (4), (5) and (6). For q4, let q = γ2(0) =(
2−vi
4−vi ,

−2
4−vi

)
and γ4(t) be the geodesic segment connecting q and q3. Let

q̃ = 1
6−vi

(
2−vi
−2

4−vi

)
and q̃3 =

(
1
0
2

)
be the lifts of q and q3 respectively with

〈q̃, q̃3〉 = −1. Then the lift of γ4(t) is of the following form

q̃ + tq̃3 =

 2−vi
6−vi + t
−2

6−vi
4−vi
6−vi + 2t


for a real number t satisfying 〈q̃ + tq̃3, q̃ + tq̃3〉 < 0. In particular, we choose
t = 1 for q4, i.e.,

q4 = P(q̃ + q̃3) =

(
8− 2vi

16− 3vi
,

−2

16− 3vi

)
.

We identify C2 with R4 via for (z1, z2) ∈ C2, (z1, z2) 7→ (Rez1, Imz1,Rez2,
Imz2) ∈ R4. Let M be the 4× 4 matrix whose entries are the real coordinates
of q1, q2, q3, q4 ∈ C2. Equivalently, consider the 4× 4 matrix whose entries are
the real coordinates of |4− 3vi|2q1, |6− vi|2q2, 2q3, |16− 3vi|2q4,

M ′ =


−8− 3v2 −2v −8 −6v
24 + v2 −2v −12 −2v

1 0 0 0
128 + 6v2 −8v −32 −6v

 .

Since v is non-zero, M ′ has rank 4. Therefore, the convex hull C has non-zero
volume. �

Using the fact that a closed connected subset S of a CAT(k)-space (k ≤ 0)
is convex if the set S is locally convex [5], we will prove that the convex hull C
has finite volume.

Lemma 3.2. The convex hull C has finite volume in complex hyperbolic 2-space
H2

C.

Proof. For i = 1, 2, 3, let ri(t) be a geodesic ray from (0, 0) ∈ C to the boundary
point pi, which is parameterized by arc length t ≥ 0. For a positive number A,
we consider a convex neighborhood Ni of the geodesic ray ri (i = 1, 2, 3) (see
Figure 3),

Ni = {p ∈ H2
C : ρ(p, ri(t)) ≤ Ae−t for some t ≥ 0}.

Then Ni has finite volume and so does N = N1 ∪ N2 ∪ N3. For a large A,
N is a locally convex set containing p1, p2 and p3. Since H2

C is a complete
CAT(−1)-space, N itself is convex. From the fact that the convex hull C is the
smallest convex set containing p1, p2 and p3, C is contained in N . Therefore, C
has finite volume. �
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Figure 3. Three geodesic rays r1, r2, r3 and a convex neigh-
borhood N1

Lemma 3.2 implies that the convex hull C(p1, p2, p3) has exactly three bound-
ary points p1, p2 and p3. In [3], they prove that if a set S is a union of finitely
many convex sets of a complete CAT(−1)-space, then S and the convex hull of
S have the same boundary at infinity.
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