• 제목/요약/키워드: Hyper-parameter

검색결과 114건 처리시간 0.027초

Catboost 알고리즘을 통한 교통흐름 예측에 관한 연구 (A Study on the traffic flow prediction through Catboost algorithm)

  • 전민종;최혜진;박지웅;최하영;이동희;이욱
    • 한국산학기술학회논문지
    • /
    • 제22권3호
    • /
    • pp.58-64
    • /
    • 2021
  • 자동차 등록대수와 비례하여 증가하는 교통 혼잡은 도시의 사회경제 발전의 저해 요소로 작용하고 있다. 본 논문은 VDS(Vehicle Detection System)을 통한 데이터를 입력 변수로 사용한다. 본 연구의 목적은 교통 흐름을 단순히 2단계(원할, 정체)가 아닌 5단계(원할, 다소 지체, 지체, 다소 정체, 정체)로 더 정교하게 예측하고, 이 예측에서 가장 정확도가 높은 모델인 Catboost 모델과 다른 모델들을 비교하는 것이다. 이를 위해 본 논문에서는 머신러닝 알고리즘인 Catboost 모델을 통해 5가지 단계를 예측하고 정확도를 다른 머신러닝 알고리즘들과 비교, 분석한다. 또한, 하이퍼 파라미터(Hyper Parameter) 튜닝 및 원-핫 인코딩(One-Hot Encoding) 전처리를 거치지 않은 Catboost 모델과 랜덤 선택(RandomizedSearchcv)을 통해 튜닝 및 데이터 전처리를 거친 모델을 비교, 분석한다. 분석 결과 하이퍼 파라미터 튜닝을 하지 않은 초기 Catboost 모델이 정확도 93%를 보이며 가장 높은 정확도를 기록하였다. 따라서 본 연구는 두가지 의의를 가진다. 첫번째로, 초기 세팅된 파라미터들이 적용된 Catboost 모델이 다수의 범주형 변수를 포함하는 교통 흐름 예측에서 다른 머신러닝, 딥러닝 모델들보다 성능이 높다는 결론을 도출했다는 점에서 의의가 있다. 두번째로, 기존 2단계로 예측하던 교통 흐름을 5단계로 예측함으로써 더욱 정교한 교통 흐름 예측 모델을 제안한다는 점에서 의의를 가진다.

냉동시스템 고장 진단 및 고장유형 분석을 위한 3단계 분류 알고리즘에 관한 연구 (A study on the 3-step classification algorithm for the diagnosis and classification of refrigeration system failures and their types)

  • 이강배;박성호;이희원;이승재;이승현
    • 한국융합학회논문지
    • /
    • 제12권8호
    • /
    • pp.31-37
    • /
    • 2021
  • 산업의 발전으로 도시화로 인해 건물의 규모가 커지면서, 건물의 공기 정화 및 쾌적한 실내 환경을 유지의 필요성 또한 증가하고 있다. 냉동 시스템의 모니터링 기술의 발전으로 건물 내에 발생하는 전력 소모량을 관리할 수 있게 되었다. 특히 상업용 건물에서 발생하는 전력 소모량 중 약 40%가 냉동 시스템에서 일어난다. 따라서 본 연구 냉동시스템 고장진단 알고리즘을 개발하기 위해서 냉동시스템의 구조를 이해하고, 냉동 시스템의 운영과정에서 발생하는 데이터를 수집 분석하여 다양한 유형과 심각도를 가지는 고장 상황을 조기에 신속하게 탐지 분류하고자 하였다. 특히 분류가 어려운 고장 유형들의 분류 정확도를 향상시키기 위하여 3단계 진단 및 분류 알고리즘을 개발하여 제안하였다. 다수의 실험과 초모수 (hyper parameter) 최적화 과정을 거쳐 각 단계에 적합한 분류 모형으로 SVM과 LGBM에 기반 한 모형을 제시하였다. 본 연구에서는 고장에 영향을 미치는 특성을 최대한 보존하면서, 선행연구에서 어려움을 겪었던 냉매 관련 고장을 포함한 모든 고장 유형을 우수한 결과로 도출하였다.

통합 베이즈 티코노프 정규화 방법의 확장과 영상복원에 대한 응용 (An Extension of Unified Bayesian Tikhonov Regularization Method and Application to Image Restoration)

  • 류재흥
    • 한국전자통신학회논문지
    • /
    • 제15권1호
    • /
    • pp.161-166
    • /
    • 2020
  • 본 논문은 통합 베이즈 티코노프 정규화 방법을 확장하는 것을 제시한다. 통합된 방법은 티코노프 정규화 모수와 베이즈 하이퍼 모수들의 관계를 정립하고 최대 사후 확률과 근거 프레임워크를 사용한 정규화 모수를 구하는 공식을 제시한다. 데이터 행렬의 차원이 m by n (m >= n)일 때, total misfit는 기존의 m에서 m ± n로 확장된다. 따라서 탐색 범위도 1에서 2n+1개의 정수로 확장된다. 선형 탐색보다는 황금분할 탐색으로 시간을 줄인다. 상대오차를 최적화하는 새로운 벤치마크를 제안하고 이를 목표로 하는 새 모델 선택 판정기준을 소개한다. 실험결과는 영상 복원 문제에 대하여 제안하는 방법의 효능을 보여준다.

복소수 웨이블릿과 베르누이-가우스 모델을 이용한 잡음 제거 (Noise Removal Using Complex Wavelet and Bernoulli-Gaussian Model)

  • 엄일규;김유신
    • 대한전자공학회논문지SP
    • /
    • 제43권5호
    • /
    • pp.52-61
    • /
    • 2006
  • 영상 및 신호 처리 분야에 일반적으로 사용되는 직교 웨이블릿 변환은 천이에 대한 민감성과 방향성에 대한 선택도가 떨어지기 때문에 성능에 한계를 가지고 있다. 이러한 단점을 극복하기 위해 복소수 웨이블릿 변환이 사용되고 있다. 본 논문에서는 이중 트리 복소수 웨이블릿과 베르누이-가우스 사전 확률분포를 이용한 효과적인 영상 잡음 제거 방법을 제안하고자 한다. 베르누이-가우스 모델에 대한 파라미터를 추정하기 위해 본 논문에서는 두 가지의 간단하고 반복적이지 않은 방법을 제안한다. 베르누이 랜덤 변수로 표현되는 혼합 파라미터를 추정하기 위해서는 가설-검증 기법을 사용한다. 추정된 혼합 파라미터를 이용하여 신호의 분산은 MGML(maximum generalized marginal likelihood) 추정기를 통하여 추정된다. 복소수 웨이블릿 변환을 사용하여 제안 방법과 알려진 잡음 제거 기법과 비교 실험을 수행하였다. 실험결과를 통해 제안 방법이 적은 계산량으로 고주파 성분이 많은 영상에 대하여 우수한 잡음 제거 결과를 나타냄을 알 수 있다.

Grid Method 기법을 이용한 베이지안 비정상성 확률강수량 산정 (Bayesian Nonstationary Probability Rainfall Estimation using the Grid Method)

  • 곽도현;김광섭
    • 한국수자원학회논문집
    • /
    • 제48권1호
    • /
    • pp.37-44
    • /
    • 2015
  • 본 연구에서는 Grid method를 사용하여 베이지안 비정상성 확률강우량 산정 모형을 확립하였다. 강우 극치자료의 분포로 Gumbel 분포를 채택하였으며, 분포형의 매개변수에 사전분포를 적용하고, 사전분포에 포함된 매개변수에는 초사전 분포를 적용하여 계층적 베이지안 모형을 구성하였다. Grid method는 매개변수의 발생가능 전 구간에 대하여 확률적으로 더 높은 뒷받침이 있는 하위 구간에서 난수를 직접 생성하여 집합을 구성함으로써 잘못된 결과를 도출할 수 가능성이 높은 상황에서도 보다 정확한 매개변수의 추정을 가능케 하므로 매개변수의 추정과정에서 비표준분포로 나타나는 조건부 확률밀도함수를 통한 난수의 추출은 기존에 사용해 온 Metropolis Hastings 알고리즘이 아닌 Grid method를 사용하였다. 개발된 모형은 서울의 1973년부터 2012년까지의 시강우자료를 이용하여 미래에 대한 재현기간에 따른 확률강수량을 산정하였으며, 그 결과로 기존 정상성 가정에 비해 목표연도에 따라 5%에서 8%정도의 증가율을 나타냈다.

클러스터링 알고리즘에서 저비용 3D LiDAR 기반 객체 감지를 위한 향상된 파라미터 추론 (Improved Parameter Inference for Low-Cost 3D LiDAR-Based Object Detection on Clustering Algorithms)

  • 김다현;안준호
    • 인터넷정보학회논문지
    • /
    • 제23권6호
    • /
    • pp.71-78
    • /
    • 2022
  • 본 논문은 3D LiDAR의 포인트 클라우드 데이터를 가공하여 3D 객체탐지를 위한 알고리즘을 제안했다. 기존에 2D LiDAR와 달리 3D LiDAR 기반의 데이터는 너무 방대하며 3차원으로 가공이 힘들었다. 본 논문은 3D LiDAR 기반의 다양한 연구들을 소개하고 3D LiDAR 데이터 처리에 관해 서술하였다. 본 연구에서는 객체탐지를 위해 클러스터링 기법을 활용한 3D LiDAR의 데이터를 가공하는 방법을 제안하며 명확하고 정확한 3D 객체탐지를 위해 카메라와 융합하는 알고리즘 설계하였다. 또한, 3D LiDAR 기반 데이터를 클러스터링하기 위한 모델을 연구하였으며 모델에 따른 하이퍼 파라미터값을 연구하였다. 3D LiDAR 기반 데이터를 클러스터링할 때, DBSCAN 알고리즘이 가장 정확한 결과를 보였으며 DBSCAN의 하이퍼 파라미터값을 비교 분석하였다. 본 연구가 추후 3D LiDAR를 활용한 객체탐지 연구에 도움이 될 것이다.

ACL-GAN: 새로운 loss 를 사용하여 하이퍼 파라메터 탐색속도와 학습속도를 향상시킨 영상변환 GAN (ACL-GAN: Image-to-Image translation GAN with enhanced learning and hyper-parameter searching speed using new loss function)

  • 조정익;윤경로
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 추계학술대회
    • /
    • pp.41-43
    • /
    • 2019
  • Image-to-image 변환에서 인상적인 성능을 보이는 StarGAN 은 모델의 성능에 중요한 영향을 끼치는 adversarial weight, classification weight, reconstruction weight 라는 세가지 하이퍼파라미터의 결정을 전제로 하고 있다. 본 연구에서는 이 중 conditional GAN loss 인 adversarial loss 와 classification loss 를 대치할 수 있는 attribute loss를 제안함으로써, adversarial weight와 classification weight 를 최적화하는 데 걸리는 시간을 attribute weight 의 최적화에 걸리는 시간으로 대체하여 하이퍼파라미터 탐색에 걸리는 시간을 획기적으로 줄일 수 있게 하였다. 제안하는 attribute loss 는 각 특징당 GAN 을 만들 때 각 GAN 의 loss 의 합으로, 이 GAN 들은 hidden layer 를 공유하기 때문에 연산량의 증가를 거의 가져오지 않는다. 또한 reconstruction loss 를 단순화시켜 연산량을 줄인 simplified content loss 를 제안한다. StarGAN 의 reconstruction loss 는 generator 를 2 번 통과하지만 simplified content loss 는 1 번만 통과하기 때문에 연산량이 줄어든다. 또한 이미지 Framing 을 통해 배경의 왜곡을 방지하고, 양방향 성장을 통해 학습 속도를 향상시킨 아키텍쳐를 제안한다.

  • PDF

학습 데이터 개선을 통한 Anomaly-based IDS의 성능 향상 방안 (A Study on the Performance Improvement of Anomaly-Based IDS Through the Improvement of Training Data)

  • 문상태;이수진
    • 융합보안논문지
    • /
    • 제19권4호
    • /
    • pp.181-188
    • /
    • 2019
  • 최근 Anomaly 기반 침입탐지시스템에서의 탐지 기준점 생성을 위해 인공지능 기술을 적용하려는 시도가 활발하게 진행되고 있다. 그러나 인공지능 기술의 적용을 제안한 기존 연구들은 대부분 인공 신경망의 구조 개선과 최적의 하이퍼파라미터 값을 찾는데 중점을 두고 있으며, 학습 데이터의 잘못된 구성으로 인해 발생할 수 있는 다양한 문제점들은 해결하지 못하고 있다. 이에 본 논문에서는 학습 데이터의 잘못된 구성으로 인해 나타날 수 있는 주요 문제점을 실험을 통해 식별하고 학습 데이터의 재구성을 통해 그러한 문제점을 개선함으로써 침입탐지 성능을 향상시킬 수 있는 방안을 제안한다.

SRM 센서리스 구동시스템을 위한 적응 슬라이딩 모드 관측기 연구 (A Study of Adaptive Sliding Mode Observer for a Sensorless Drive System of SRM)

  • 오주환;이진우;권병일
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권12호
    • /
    • pp.691-699
    • /
    • 2004
  • SRM(Switched Reluctance Motor) drives require the accurate position information of the rotor. These informations are generally provided by a tacho generator or digital shaft-position encoder These speed sensors lower the system reliability and require special attention to noise. This paper describes a new approach to estimating SRM speed from measured terminal voltages and currents for speed sensorless control. The described method is based on the sliding mode observer. The rotor speed and position observers are estimated by the adaptation law using the real and estimated currents. However, the conventional adaptive sliding mode observer based on the variable structure control theory has some disadvantages that the estimated values including the high-frequency chattering and the steady state error generated due to the infinite feedback gain chosen and the discontinuous control input. To reduce the chattering and steady state error, an integrator is also inserted in the sliding mode observer strategy. The described adaptive sliding mode observer decreases the vibration to the switching hyper-plane of the sliding mode by adding integrator. The described methodology incorporates the Lyapunov algorithm to drive the rotor speed and the stator resistance such that it can overcome the problem of sensitivity in the face of SRM parameter variation. Also, without any mechanical information. The rotor speed of SRM is obtained form adaptive scheme. The described method is verified through the simulation and experiment.

복잡계에서의 임베딩 구동 동기화 기법 (The Embedding Synchronization Method in the Complex System)

  • 배영철;김이곤;김천석;구영덕
    • 한국지능시스템학회논문지
    • /
    • 제16권1호
    • /
    • pp.18-23
    • /
    • 2006
  • 복잡계에서의 동기화는 기본적으로 카오스 신호에서의 동기화 이론에 근거를 두고 발전하고 있으나 복잡계 신호의 복잡도가 카오스 신호보다 복잡도가 커서 동기화하는데 어려움이 많다. 이에 본 논문은 복잡계에서 동기화 기법을 적용하기 위하여 n-double 스크롤 회로에서는 결합 동기 이론을 적용한 동기화 기법과 여러 개의 파라미터 중 하나의 파라미터만을 가지고 동기화를 이루는 새로운 임베딩 구동 동기화 기법을 복잡계 회로의 하나인 하이퍼카오스 회로에서 제안하였다. 제안한 동기화 기법을 적용한 결과 복잡계에서 우수한 동기화 결과를 얻었음을 확인하였다.