References
- D. L. Donoho, and I. M. Johonstone, 'Ideal spatial adaptation by wavelet shrinkage' Biometrika, vol.81, no.3, pp.425-455, 1994 https://doi.org/10.1093/biomet/81.3.425
- D. L. Donoho, and I. M. Johonstone, 'Adapting to unknown smoothness via wavelet shrinkage,' Journal of the American Statistical Association, vol.90, no.432, pp.1200-1224, 1995 https://doi.org/10.2307/2291512
- M. K. Mihcak, I. Kozintsev, K. Ramchandran, and P.Moulin, 'Low-complexity image denoising based on statistical modeling of wavelet coefficients,' IEEE Signal Processing Letters, vol.6, no.12, pp.300-303. 1999 https://doi.org/10.1109/97.803428
- M. A. T. Figueiredo, and R. D. Nowak, 'Wavelet-based image estimation: An empirical Bayes approach using Jeffrey's noninformative prior,' IEEE. Transaction on Image Processing, vol.10, no.9, pp.1322-1331, 2001 https://doi.org/10.1109/83.941856
- Z, Cai, T. H. Cheng, C. Lu, and K. R. Subramanian, 'Efficient wavelet-based image denoising algorithm,' Electronics Letters, vol.37, no.11, pp.683-685, 2001 https://doi.org/10.1049/el:20010466
- S. G. Chang, B. Yu, and M. Vetteri, 'Spatially adaptive wavelet thresholding with context modeling for image denoising,' IEEE. Transaction on Image Processing, vol.9, no.9, pp.1522-1531, 2000 https://doi.org/10.1109/83.862630
- S. G. Chang, B. Yu, and M. Vetteri, 'Adaptive wavelet thresholding for image denoising and compression,' IEEE. Transaction on Image Processing, vol.9, no.9, pp.1532-1546, 2000 https://doi.org/10.1109/83.862633
- V. Strela, J. Portilla, and E. P. Simoncelli, 'Image denoising using a local Gaussian scale mixture model in the wavelet domain,' Proceeding of SPIE, 45th Annual Meeting, San Diego, July 2000 https://doi.org/10.1117/12.408621
- J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli, 'Image denoising using Gaussian scale mixtures in the wavelet domain,' IEEE Transaction on Image Processing, vol.12, no.11, pp.1338-1351, 2003 https://doi.org/10.1109/TIP.2003.818640
- J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli, 'Adaptive Wiener denoising using a Gaussian scale mixture model in the wavelet domain,' Proceeding of IEEE International. Conference on Image Processing, Thessaloniki, Greece, Oct. 2001 https://doi.org/10.1109/ICIP.2001.958418
- F. Abramovich, T. Sapatinas, and B. Silverman, 'Wavelet thresholding via a Bayesian approach,' Journal of the Royal Statistical Society B, 60, pp.725-749, 1998 https://doi.org/10.1111/1467-9868.00151
- H. A. Chipman, E. D. Kolaczyk, and R. E. McCulloch, 'Adaptive Bayesian wavelet shrinkage,' Journal of the American Statistical Association, 92, pp.1413-1421, 1997 https://doi.org/10.2307/2965411
- B. Vidakovic, 'Nonlinear wavelet shrinkage with Bayes rules and Bayes factors,' Journal of the American Statistical Association, 93, pp.173-179, 1998 https://doi.org/10.2307/2669614
- M. Clyde, G. Parmigiani, and B. Vidakovic, 'Multiple shrinkage and subset selection in wavelets,' Biometrika, vol.85, no.2, pp.391-401, 1998 https://doi.org/10.1093/biomet/85.2.391
- D. Leporini, J.-C. Pesquet, and H. Krim, 'Best basis representation with prior statistical models,' Lecture Notes in Statistics, pp.155-172, 1999
- B. Vidakovic, 'Wavelet-based nonparametric Bayes methods,' Lecture Notes in Statistics, vol.133, pp.133-155, 1998
- Bijaoui, 'Wavelets, Gaussian mixtures and Wiener filtering,' Signal Processing, 82, pp.709-712, 2002 https://doi.org/10.1016/S0165-1684(02)00137-8
- L. Sendur and I. W. Selesnick, 'Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency,' IEEE Transaction on Signal Processing, vol.50, no.11, pp.2744-2756, (2002) https://doi.org/10.1109/TSP.2002.804091
- L. Sendur and I. W. Selesnick, 'Bivariate shrinkage with local variance estimation,' IEEE Signal Processing Letters, vol.9, no.12, pp.438-441, 2002 https://doi.org/10.1109/LSP.2002.806054
- D. Cho, and T. D. Bui, 'Multivariate statistical modeling for image denoising using wavelet transforms,' Signal Processing: Image Communication, 20, pp.77-89, 2005 https://doi.org/10.1016/j.image.2004.10.003
- M. S. Crouse, R. D. Nowak, and R.G. Baraniuk, 'Wavelet-based statistical signal processing using hidden Markov models,' IEEE. Transaction on Image Processing, vol.46, pp.886-902, 1998 https://doi.org/10.1109/78.668544
- J. K. Romberg, H. Choi, and R. G. Baraniuk, 'Bayesian tree-structured image modeling using wavelet-domain hidden Markov models,' IEEE. Transaction on Image Processing, vol.10, no.7, pp.1056-1068, 2001 https://doi.org/10.1109/83.931100
- H. Choi, J. Romberg, R. Baraniuk, and N. Kingsbury, 'Hidden Markov tree modeling of complex wavelet transforms,' Proceeding of IEEE International Conference on Acoustics, Speech and Signal Processing, Istanbul, Turkey, June, 2000 https://doi.org/10.1109/ICASSP.2000.861889
- G. Fan and X. G. Xia, 'Image denoising using local contextual hidden Markov model in the wavelet domain,' IEEE Signal Processing Letters, vol.8, no.5, pp.125-128, 2001 https://doi.org/10.1109/97.917691
- M. M. Ichir and A. M. Djafari, 'Hidden Markov models for wavelet image separation and denoising,' Proceeding of IEEE International Conference on Acoustics, Speech and Signal Processing, pp.225-228, 2005 https://doi.org/10.1109/ICASSP.2005.1416281
- M. Malfait and D. Roose, 'Wavelet-based image denoising using a Markov random field a priori model,' IEEE Transaction on Image processing, vol.6, no.4, pp.549-565, 1997 https://doi.org/10.1109/83.563320
- A. Pizurica, W. Philips, I. Lemahieu, and M. Acheroy, 'A joint inter- and intrascale statistical model for wavelet based Bayesian image denoising,' IEEE Transactions on Image Processing, vol.11, no.5, pp.545-557, 2002 https://doi.org/10.1109/TIP.2002.1006401
- F. Champagnat, and J. Idier, 'An alternative to standard maximum likelihood for Gaussian mixtures,' Proceeding of IEEE International Conference on Acoustics, Speech and Signal Processing, pp.2020-2023, 1995 https://doi.org/10.1109/ICASSP.1995.480672
- F. Champagnat, and J. Idier, 'Generalized marginal likelihood for Gaussian mixtures,' LSS Internal Report GPI-94-01, 20, 1994
- E. J. Dudewicz, and S. N. Mishra, Modern Mathematical Statistics, John Wiley and Sons, 1988
- N. G. Kingsbury, 'Image processing with complex wavelets,' Phil. Trans. Royal Society London A, 357, pp.2543-2560, 1999 https://doi.org/10.1098/rsta.1999.0447
- N. Kingsbury, 'Complex wavelets for shift invariant analysis and filtering of signals,'. Applied and Computational Harmonic Analysis, vol.10, no.3, pp.234-253, 2001 https://doi.org/10.1006/acha.2000.0343
- J. Zhong, and R. Ning, 'Image denoising based on wavelets and multifractals for singularity detection,' IEEE Transaction on Image Processing, vol.14, no.10, pp.1435-1447, 2005 https://doi.org/10.1109/TIP.2005.849313
- J. Starck, E. Candes, and D. Donoho, 'The curvelet transform for image denoising,' IEEE Transaction on Image Processing, vol.11, no.6, pp.670-684, 2002 https://doi.org/10.1109/TIP.2002.1014998