Noise Removal Using Complex Wavelet and Bernoulli-Gaussian Model

복소수 웨이블릿과 베르누이-가우스 모델을 이용한 잡음 제거

  • Eom Il-Kyu (Dept. of Electronics Engineering, Pusan National University) ;
  • Kim Yoo-Shin (Dept. of Electronics Engineering, Pusan National University)
  • Published : 2006.09.01

Abstract

Orthogonal wavelet tansform which is generally used in image and signal processing applications has limited performance because of lack of shift invariance and low directional selectivity. To overcome these demerits complex wavelet transform has been proposed. In this paper, we present an efficient image denoising method using dual-tree complex wavelet transform and Bernoulli-Gauss prior model. In estimating hyper-parameters for Bernoulli-Gaussian model, we present two simple and non-iterative methods. We use hypothesis-testing technique in order to estimate the mixing parameter, Bernoulli random variable. Based on the estimated mixing parameter, variance for clean signal is obtained by using maximum generalized marginal likelihood (MGML) estimator. We simulate our denoising method using dual-tree complex wavelet and compare our algorithm to well blown denoising schemes. Experimental results show that the proposed method can generate good denoising results for high frequency image with low computational cost.

영상 및 신호 처리 분야에 일반적으로 사용되는 직교 웨이블릿 변환은 천이에 대한 민감성과 방향성에 대한 선택도가 떨어지기 때문에 성능에 한계를 가지고 있다. 이러한 단점을 극복하기 위해 복소수 웨이블릿 변환이 사용되고 있다. 본 논문에서는 이중 트리 복소수 웨이블릿과 베르누이-가우스 사전 확률분포를 이용한 효과적인 영상 잡음 제거 방법을 제안하고자 한다. 베르누이-가우스 모델에 대한 파라미터를 추정하기 위해 본 논문에서는 두 가지의 간단하고 반복적이지 않은 방법을 제안한다. 베르누이 랜덤 변수로 표현되는 혼합 파라미터를 추정하기 위해서는 가설-검증 기법을 사용한다. 추정된 혼합 파라미터를 이용하여 신호의 분산은 MGML(maximum generalized marginal likelihood) 추정기를 통하여 추정된다. 복소수 웨이블릿 변환을 사용하여 제안 방법과 알려진 잡음 제거 기법과 비교 실험을 수행하였다. 실험결과를 통해 제안 방법이 적은 계산량으로 고주파 성분이 많은 영상에 대하여 우수한 잡음 제거 결과를 나타냄을 알 수 있다.

Keywords

References

  1. D. L. Donoho, and I. M. Johonstone, 'Ideal spatial adaptation by wavelet shrinkage' Biometrika, vol.81, no.3, pp.425-455, 1994 https://doi.org/10.1093/biomet/81.3.425
  2. D. L. Donoho, and I. M. Johonstone, 'Adapting to unknown smoothness via wavelet shrinkage,' Journal of the American Statistical Association, vol.90, no.432, pp.1200-1224, 1995 https://doi.org/10.2307/2291512
  3. M. K. Mihcak, I. Kozintsev, K. Ramchandran, and P.Moulin, 'Low-complexity image denoising based on statistical modeling of wavelet coefficients,' IEEE Signal Processing Letters, vol.6, no.12, pp.300-303. 1999 https://doi.org/10.1109/97.803428
  4. M. A. T. Figueiredo, and R. D. Nowak, 'Wavelet-based image estimation: An empirical Bayes approach using Jeffrey's noninformative prior,' IEEE. Transaction on Image Processing, vol.10, no.9, pp.1322-1331, 2001 https://doi.org/10.1109/83.941856
  5. Z, Cai, T. H. Cheng, C. Lu, and K. R. Subramanian, 'Efficient wavelet-based image denoising algorithm,' Electronics Letters, vol.37, no.11, pp.683-685, 2001 https://doi.org/10.1049/el:20010466
  6. S. G. Chang, B. Yu, and M. Vetteri, 'Spatially adaptive wavelet thresholding with context modeling for image denoising,' IEEE. Transaction on Image Processing, vol.9, no.9, pp.1522-1531, 2000 https://doi.org/10.1109/83.862630
  7. S. G. Chang, B. Yu, and M. Vetteri, 'Adaptive wavelet thresholding for image denoising and compression,' IEEE. Transaction on Image Processing, vol.9, no.9, pp.1532-1546, 2000 https://doi.org/10.1109/83.862633
  8. V. Strela, J. Portilla, and E. P. Simoncelli, 'Image denoising using a local Gaussian scale mixture model in the wavelet domain,' Proceeding of SPIE, 45th Annual Meeting, San Diego, July 2000 https://doi.org/10.1117/12.408621
  9. J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli, 'Image denoising using Gaussian scale mixtures in the wavelet domain,' IEEE Transaction on Image Processing, vol.12, no.11, pp.1338-1351, 2003 https://doi.org/10.1109/TIP.2003.818640
  10. J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli, 'Adaptive Wiener denoising using a Gaussian scale mixture model in the wavelet domain,' Proceeding of IEEE International. Conference on Image Processing, Thessaloniki, Greece, Oct. 2001 https://doi.org/10.1109/ICIP.2001.958418
  11. F. Abramovich, T. Sapatinas, and B. Silverman, 'Wavelet thresholding via a Bayesian approach,' Journal of the Royal Statistical Society B, 60, pp.725-749, 1998 https://doi.org/10.1111/1467-9868.00151
  12. H. A. Chipman, E. D. Kolaczyk, and R. E. McCulloch, 'Adaptive Bayesian wavelet shrinkage,' Journal of the American Statistical Association, 92, pp.1413-1421, 1997 https://doi.org/10.2307/2965411
  13. B. Vidakovic, 'Nonlinear wavelet shrinkage with Bayes rules and Bayes factors,' Journal of the American Statistical Association, 93, pp.173-179, 1998 https://doi.org/10.2307/2669614
  14. M. Clyde, G. Parmigiani, and B. Vidakovic, 'Multiple shrinkage and subset selection in wavelets,' Biometrika, vol.85, no.2, pp.391-401, 1998 https://doi.org/10.1093/biomet/85.2.391
  15. D. Leporini, J.-C. Pesquet, and H. Krim, 'Best basis representation with prior statistical models,' Lecture Notes in Statistics, pp.155-172, 1999
  16. B. Vidakovic, 'Wavelet-based nonparametric Bayes methods,' Lecture Notes in Statistics, vol.133, pp.133-155, 1998
  17. Bijaoui, 'Wavelets, Gaussian mixtures and Wiener filtering,' Signal Processing, 82, pp.709-712, 2002 https://doi.org/10.1016/S0165-1684(02)00137-8
  18. L. Sendur and I. W. Selesnick, 'Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency,' IEEE Transaction on Signal Processing, vol.50, no.11, pp.2744-2756, (2002) https://doi.org/10.1109/TSP.2002.804091
  19. L. Sendur and I. W. Selesnick, 'Bivariate shrinkage with local variance estimation,' IEEE Signal Processing Letters, vol.9, no.12, pp.438-441, 2002 https://doi.org/10.1109/LSP.2002.806054
  20. D. Cho, and T. D. Bui, 'Multivariate statistical modeling for image denoising using wavelet transforms,' Signal Processing: Image Communication, 20, pp.77-89, 2005 https://doi.org/10.1016/j.image.2004.10.003
  21. M. S. Crouse, R. D. Nowak, and R.G. Baraniuk, 'Wavelet-based statistical signal processing using hidden Markov models,' IEEE. Transaction on Image Processing, vol.46, pp.886-902, 1998 https://doi.org/10.1109/78.668544
  22. J. K. Romberg, H. Choi, and R. G. Baraniuk, 'Bayesian tree-structured image modeling using wavelet-domain hidden Markov models,' IEEE. Transaction on Image Processing, vol.10, no.7, pp.1056-1068, 2001 https://doi.org/10.1109/83.931100
  23. H. Choi, J. Romberg, R. Baraniuk, and N. Kingsbury, 'Hidden Markov tree modeling of complex wavelet transforms,' Proceeding of IEEE International Conference on Acoustics, Speech and Signal Processing, Istanbul, Turkey, June, 2000 https://doi.org/10.1109/ICASSP.2000.861889
  24. G. Fan and X. G. Xia, 'Image denoising using local contextual hidden Markov model in the wavelet domain,' IEEE Signal Processing Letters, vol.8, no.5, pp.125-128, 2001 https://doi.org/10.1109/97.917691
  25. M. M. Ichir and A. M. Djafari, 'Hidden Markov models for wavelet image separation and denoising,' Proceeding of IEEE International Conference on Acoustics, Speech and Signal Processing, pp.225-228, 2005 https://doi.org/10.1109/ICASSP.2005.1416281
  26. M. Malfait and D. Roose, 'Wavelet-based image denoising using a Markov random field a priori model,' IEEE Transaction on Image processing, vol.6, no.4, pp.549-565, 1997 https://doi.org/10.1109/83.563320
  27. A. Pizurica, W. Philips, I. Lemahieu, and M. Acheroy, 'A joint inter- and intrascale statistical model for wavelet based Bayesian image denoising,' IEEE Transactions on Image Processing, vol.11, no.5, pp.545-557, 2002 https://doi.org/10.1109/TIP.2002.1006401
  28. F. Champagnat, and J. Idier, 'An alternative to standard maximum likelihood for Gaussian mixtures,' Proceeding of IEEE International Conference on Acoustics, Speech and Signal Processing, pp.2020-2023, 1995 https://doi.org/10.1109/ICASSP.1995.480672
  29. F. Champagnat, and J. Idier, 'Generalized marginal likelihood for Gaussian mixtures,' LSS Internal Report GPI-94-01, 20, 1994
  30. E. J. Dudewicz, and S. N. Mishra, Modern Mathematical Statistics, John Wiley and Sons, 1988
  31. N. G. Kingsbury, 'Image processing with complex wavelets,' Phil. Trans. Royal Society London A, 357, pp.2543-2560, 1999 https://doi.org/10.1098/rsta.1999.0447
  32. N. Kingsbury, 'Complex wavelets for shift invariant analysis and filtering of signals,'. Applied and Computational Harmonic Analysis, vol.10, no.3, pp.234-253, 2001 https://doi.org/10.1006/acha.2000.0343
  33. J. Zhong, and R. Ning, 'Image denoising based on wavelets and multifractals for singularity detection,' IEEE Transaction on Image Processing, vol.14, no.10, pp.1435-1447, 2005 https://doi.org/10.1109/TIP.2005.849313
  34. J. Starck, E. Candes, and D. Donoho, 'The curvelet transform for image denoising,' IEEE Transaction on Image Processing, vol.11, no.6, pp.670-684, 2002 https://doi.org/10.1109/TIP.2002.1014998