• Title/Summary/Keyword: Hyers-Ulam stability of functional equations

Search Result 100, Processing Time 0.023 seconds

APPLICATION OF FIXED POINT THEOREM FOR UNIQUENESS AND STABILITY OF SOLUTIONS FOR A CLASS OF NONLINEAR INTEGRAL EQUATIONS

  • GUPTA, ANIMESH;MAITRA, Jitendra Kumar;RAI, VANDANA
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.1_2
    • /
    • pp.1-14
    • /
    • 2018
  • In this paper, we prove the existence, uniqueness and stability of solution for some nonlinear functional-integral equations by using generalized coupled Lipschitz condition. We prove a fixed point theorem to obtain the mentioned aim in Banach space $X=C([a,b],{\mathbb{R}})$. As application we study some volterra integral equations with linear, nonlinear and single kernel.

ASYMPTOTIC BEHAVIORS OF JENSEN TYPE FUNCTIONAL EQUATIONS IN HALF PLANES

  • Kim, Sang-Youp;Kim, Gyu-Tae;Lee, Gi-Hui;Lee, Jae-Ho;Park, Gwang-Hyun
    • The Pure and Applied Mathematics
    • /
    • v.18 no.2
    • /
    • pp.113-128
    • /
    • 2011
  • Let f : ${\mathbb{R}}{\rightarrow}{\mathbb{C}}$. We consider the Hyers-Ulam stability of Jensen type functional inequality $$|f(px+qy)-Pf(x)-Qf(y)|{\leq}{\epsilon}$$ in the half planes {(x, y) : $kx+sy{\geq}d$} for fixed d, k, $s{\in}{\mathbb{R}}$ with $k{\neq}0$ or $s{\neq}0$. As consequences of the results we obtain the asymptotic behaviors of f satisfying $$|f(px+qy)-Pf(x)-Qf(y)|{\rightarrow}0$$ as $kx+sy{\rightarrow}{\infty}$.

QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN NON-ARCHIMEDEAN NORMED SPACES

  • Cui, Yinhua;Hyun, Yuntak;Yun, Sungsik
    • The Pure and Applied Mathematics
    • /
    • v.24 no.2
    • /
    • pp.109-127
    • /
    • 2017
  • In this paper, we solve the following quadratic ${\rho}-functional$ inequalities ${\parallel}f({\frac{x+y+z}{2}})+f({\frac{x-y-z}{2}})+f({\frac{y-x-z}{2}})+f({\frac{z-x-y}{2}})-f(x)-f(y)f(z){\parallel}$ (0.1) ${\leq}{\parallel}{\rho}(f(x+y+z)+f(x-y-z)+f(y-x-z)+f(z-x-y)-4f(x)-4f(y)-4f(z)){\parallel}$, where ${\rho}$ is a fixed non-Archimedean number with ${\mid}{\rho}{\mid}$ < ${\frac{1}{{\mid}4{\mid}}}$, and ${\parallel}f(x+y+z)+f(x-y-z)+f(y-x-z)+f(z-x-y)-4f(x)-4f(y)-4f(z){\parallel}$ (0.2) ${\leq}{\parallel}{\rho}(f({\frac{x+y+z}{2}})+f({\frac{x-y-z}{2}})+f({\frac{y-x-z}{2}})+f({\frac{z-x-y}{2}})-f(x)-f(y)f(z)){\parallel}$, where ${\rho}$ is a fixed non-Archimedean number with ${\mid}{\rho}{\mid}$ < ${\mid}8{\mid}$. Using the direct method, we prove the Hyers-Ulam stability of the quadratic ${\rho}-functional$ inequalities (0.1) and (0.2) in non-Archimedean Banach spaces and prove the Hyers-Ulam stability of quadratic ${\rho}-functional$ equations associated with the quadratic ${\rho}-functional$ inequalities (0.1) and (0.2) in non-Archimedean Banach spaces.

ORTHOGONAL PEXIDER HOM-DERIVATIONS IN BANACH ALGEBRAS

  • Vahid Keshavarz;Jung Rye Lee;Choonkil Park
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.1
    • /
    • pp.95-105
    • /
    • 2023
  • In the present paper, we introduce a new system of functional equations, known as orthogonal Pexider hom-derivation and Pexider hom-Pexider derivation (briefly, (Pexider) hom-derivation). Using the fixed point method, we investigate the stability of Pexider hom-derivations and (Pexider) hom-derivations on Banach algebras.

STABILITY OF FUNCTIONAL EQUATIONS ASSOCIATED WITH INNER PRODUCT SPACES: A FIXED POINT APPROACH

  • Park, Choonkil;Hur, Jae Sung;Min, Won June;Nam, Dong Hoon;Roh, Seung Hyeon
    • Korean Journal of Mathematics
    • /
    • v.16 no.3
    • /
    • pp.413-424
    • /
    • 2008
  • In [21], Th.M. Rassias proved that the norm defined over a real vector space V is induced by an inner product if and only if for a fixed integer $n{\geq}2$ $$n{\parallel}\frac{1}{n}\sum\limits_{i=1}^{n}x_i{\parallel}^2+\sum\limits_{i=1}^{n}{\parallel}x_i-\frac{1}{n}\sum\limits_{j=1}^{n}x_j{\parallel}^2=\sum\limits_{i=1}^{n}{\parallel}x_i{\parallel}^2$$ holds for all $x_1,{\dots},x_n{\in}V$. We consider the functional equation $$nf(\frac{1}{n}\sum\limits^n_{i=1}x_i)+\sum\limits_{i=1}^{n}f(x_i-\frac{1}{n}\sum\limits_{j=1}^{n}x_j)=\sum\limits_{i=1}^nf(x_i)$$ Using fixed point methods, we prove the generalized Hyers-Ulam stability of the functional equation $$(1)\;2f(\frac{x+y}{2})+f(\frac{x-y}{2})+f(\frac{y-x}{2})=f(x)+f(y)$$.

  • PDF

SOLUTIONS AND STABILITY OF TRIGONOMETRIC FUNCTIONAL EQUATIONS ON AN AMENABLE GROUP WITH AN INVOLUTIVE AUTOMORPHISM

  • Ajebbar, Omar;Elqorachi, Elhoucien
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.55-82
    • /
    • 2019
  • Given ${\sigma}:G{\rightarrow}G$ an involutive automorphism of a semigroup G, we study the solutions and stability of the following functional equations $$f(x{\sigma}(y))=f(x)g(y)+g(x)f(y),\;x,y{\in}G,\\f(x{\sigma}(y))=f(x)f(y)-g(x)g(y),\;x,y{\in}G$$ and $$f(x{\sigma}(y))=f(x)g(y)-g(x)f(y),\;x,y{\in}G$$, from the theory of trigonometric functional equations. (1) We determine the solutions when G is a semigroup generated by its squares. (2) We obtain the stability results for these equations, when G is an amenable group.

HOMOMORPHISMS IN PROPER LIE CQ*-ALGEBRAS

  • Lee, Jung Rye;Shin, Dong Yun
    • Korean Journal of Mathematics
    • /
    • v.19 no.1
    • /
    • pp.87-99
    • /
    • 2011
  • Using the Hyers-Ulam-Rassias stability method of functional equations, we investigate homomorphisms in proper $CQ^*$-algebras and proper Lie $CQ^*$-algebras, and derivations on proper $CQ^*$-algebras and proper Lie $CQ^*$-algebras associated with the following functional equation $$\frac{1}{k}f(kx+ky+kz)=f(x)+f(y)+f(z)$$ for a fixed positive integer $k$.