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ASYMPTOTIC BEHAVIORS OF JENSEN TYPE FUNCTIONAL
EQUATIONS IN HALF PLANES

SANGYOUP KimM?, GYUTAE KiM P, Ginut LEEC, JAEHO LEE? AND
GWANGHYUN PARK ¢

ABSTRACT. Let f : R — C. We consider the Hyers-Ulam stability of Jensen type
functional inequality

[f(px+qy) — Pf(z) —Qf(y)| < e

in the half planes {(z,y) : kx + sy > d} for fixed d, k,s € R with k # 0 or s # 0. As
consequences of the results we obtain the asymptotic behaviors of f satisfying

[f(px +qy) — Pf(z) —Qf(y)| — 0

as kx + sy — oo.

1. INTRODUCTION

The stability problems of functional equations have originated with S. M. Ulam
in 1940 when he proposed the following problem [26]:

Let f be a mapping from a group Gy to a metric group Ga with metric d(-,-) such
that

d(f(zy), f(z)f(y)) <e.
Then does there exist a group homomorphism h and 0. > 0 such that
d(f(x), h(x)) <
forallz € G1 ¢
As an answer for the question of Ulam, D. H. Hyers proved the following result.
Theorem 1.1. Suppose that (S, +) is an additive semigroup, € >0, and f : S — B

with B a Banach space, satisfies the inequality

(1.1) 1f(@+y) = flz) = fyl <e
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for all x, y € S. Then there exists a unique function A : S — B satisfying
(1.2) Alx +y) = A(z) + A(y)
for which

1f(z) = A(z)]| <€
forallz € S.

We call the functions satisfying (1.2) additive functions. Generalizing the Hyers’

result he proved that if a mapping f : X — Y between two Banach spaces satisfies

[f(x+y) = f(z) = fy)l < (2,y) for z,ye X

with ®(x,y) = €e(||z]|P + [|y]|’) (¢ > 0,0 < p < 1), then there exists a unique
additive function A : X — Y such that || f(z) — A(z)]| < 2¢|zP/(2 — 2P) for all
x € X. In 1951, D.G. Bourgin[4] stated that if ® is symmetric in ||z| and ||y||
with 3°7%, ®(27x,291) /27 < oo for each x € X, then there exists a unique additive
function A : X — Y such that [|f(z) — A(z)[| < 3772, O(2z,272)/2 for all z € X.
Unfortunately, there were no use of these results until 1978 when Th. M. Rassias [21]
treated with the inequality of Aoki [1]. Following the Rassias’ result, a great number
of papers on the subject have been published concerning numerous functional equa-
tions in various directions [11, 13, 14, 15, 16, 18, 19, 20, 21, 25]. Among the results,
stability problem in a restricted domain was investigated by F. Skof, who proved the
stability problem of the inequality (1.1) in a restricted domain [25]. Developing this
result, S.-M. Jung, J. M. Rassias and M. J. Rassias considered the stability prob-
lems in restricted domains for the Jensen functional equation [14] and Jensen type
functional equations [19]. We also refer the reader to [2, 3, 6, 7, 8, 9, 22, 23, 24] for
some related results on Hyers-Ulam stabilities in restricted conditions. Throughout
this paper we denote by R, R, and C the sets of real numbers, positive real num-
bers and complex numbers, respectively, f : R — C and p, ¢, P, Q be fixed nonzero
real numbers. In this paper we prove the Hyers-Ulam stability of the Jensen type

functional inequality

(1.3) [f(pz+qy) — Pf(z) = Qf(y)| <€

in restricted domain I ;4 = {(x,y) € R? : kz + sy > d} for fixed d, k, s € R with

k # 0 or s # 0. As a consequence of the result we prove that if

|f(px +qy) — Pf(z) — Qf(y)| — 0
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as kx + sy — oo, then there exists a unique additive function A : R — C such that

f(z) = A(x) + £(0)

for all z € R.

2. HYERS-ULAM STABILITY OF JENSEN TYPE EQUATION
IN RESTRICTED DOMAINS

We first consider the usual Cauchy functional inequality in the restricted domain
Uy sa={(z,y) € R*: kx + sy > d} for fixed k,s,d € R with k # 0 or s # 0.
Theorem 2.1. Let € >0, d,k,s € R with k # 0 or s # 0. Suppose that f : R — C
satisfies

(2.1) [f(@+y) = fle) = fly)l <e

for all x;y € R, with kx + sy > d. Then there exists a unique additive function
A:R — C such that

(2.2) [f(z) = Az)| < 3e
for all x € R.

Proof. From the symmetry of the inequality we may assume that s # 0. For given
x,y € R, choose a z € R such that kx+ky+sz > d, kx+sy+sz > d and ky+sz > d.

Then we have

|f(x+y) = f(x) — f(y)]
<|=flet+y+z2)+ flx+y) + f(2)]

(2.3) +flx+y+2)— flx) = fly+2)]
+1fy+2) = fly) = f(2)]
< 3e.

Now by Theorem 1.1, there exists a unique additive function A : R — C such
that

[f(z) — A(z)] < 3e
for all x € R. This completes the proof. O

Now we consider the Hyers-Ulam stability of the Jensen type functional inequality

(1.3) in the restricted domains ITj, 5 4.
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Theorem 2.2. Let € >0, d, k,s € R, % #* 3. Suppose that f : R — C satisfies
(2.4) [f(px +qy) — Pf(z) = Qf () <€

for all x,y € R, with kx + sy > d. Then there exists a unique additive function
A:R — C such that

(2.5) |f(z) = A(z) = f(0)] < 4e
for all x € R.
Proof. Replacing x by %x, y by %y in (2.4) we have

€z Yy
(2.6) [flz+y) —Pf(g) —Qf(g)! <e
for all z,y € R, with %1’ + gy > d. For given x,y € R, choose a z € R such that
%x%—gy—k(g—%)z > d, %x—k(g—%)z > d, §y+(§—%)z2d, and (3—%)z2d.
Replacing z by z — 2z, y by y + z; by  — 2, y by 2z; « by —z, y by y + 2; « by 271,
y by z in (2.6) we have

[f(x+y) = f(x) = f(y) + f(0)]

clien- (7)o"

(2.7) + f(q:)+Pf(x;Z> +Qf<;)

+ —f(y)+Pf<—;> +Qf<y“>‘

q
() o)

< 4e.

Now by Theorem 1.1, there exists a unique additive function A : R — C such that

[f(z) — A(z) — f(0)] < 4e
for all x € R. This completes the proof. O
Theorem 2.3. Let € >0, d,k,s € R with k #0 or s # 0. Suppose that f : R — C

satisfies

(2.8) [f(pz+qy) — Pf(x) = Qf(y)| <€

for all x;y € R, with kx + sy > d. Then there exists a unique additive function
AR — C such that
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(2.9) F(z) — Ax) — F(0)] < |4P|
forallx € R if s #0, and
(2.10) F(x) — Az) — F(0)] < |4Q€

forallz e R if k # 0.

Proof. Assume that s # 0. For given z,y € R, choose a z € R such that kz+ky+sz >
d, km—i—p—;y—l—sz >d, ky + sz > d and p—;y—l—sz > d. Replacing = by = +y, y by z;
x by @,y by Ly + 22 by y, y by z; 2 by 0, y by Ly + 2 in (2.8) we have

|Pf(z+y) — Pf(x) — Pf(y) + Pf(0)]
<|—f(pr+py+qz)+ Pflz+y) +Qf(2)]
(2.11) + | f(px +py+q2)—Pf(ﬂf)—Qf(5y+2)‘
+[f(py +q2) — Pf(y) — Qf(2)]
p
n —f(py+qz:)+Pf(0)+Qf<qy+z>’

< 4e.

Dividing (2.11) by |P| and using Theorem 1.1, we obtain that there exists a unique
additive function A : R — C such that

(@) = A(w) - 1O < 75
for all x € R. Assume that k& # 0. For given z,y € R, choose a z € R such that
s+ sy + kz > d, %k:c—ksy—i-kz >d, sx + kz > d and %a:+kz > d. Replacing y
by z +y, x by z; y by y, x by %x—l-z; y by z, x by 2z; y by 0, = by %x—l—zin (2.8)

we have
Qf(x+y) — Qf(z) — Qf(y) + Qf(0)]
<|=flpr+py+qz)+ Pf(z) + Qf(x + y)|
(2.12) + | f(qx + qy + pz) —Pf<;w+2> —Qf(y)‘

+ | f(gz +p2z) — Pf(2) — Qf (2)]
+ | — flgz + p2) —i—Pf(Za:—Fz) +Qf(0)‘

< 4e.
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Dividing (2.12) by |Q| and using Theorem 1.1, we obtain that there exists a unique
additive function A : R — C such that

U@%wﬂ@—fWHSRj

for all x € R. This completes the proof. O
We obtain that A = 0 in Theorem 2.2 and Theorem 2.3 provided that p # P and

p or P is a rational number, or ¢ # () and ¢ or @ is a rational number. As a matter

of fact we have the followings.

Theorem 2.4. Let ¢ > 0,d, k,s € R, % #* Z' Suppose that p # P and p or P is a

rational number, or q # Q and q or Q is a rational number, and f : R — C satisfies

(2.13) |f(pz +qy) = Pf(z) = Qf(y)| < e
for all x,y € R, with kx + sy > d. Then we have

(2.14) (@) — F0)] < 4e

for all x € R.

Proof. We prove (2.14) only for the case that p # P and p or P is a rational number
since the other case is similarly proved. From (2.5) and (2.13), using the triangle

inequality we have

(2.15) [A(pr + qy) — PA(z) = QA(y)| < M

for all z,y € R, with kz + sy > d, where M = e(5+4|P|+4|Q|) +|f(0)(1— P —Q)|.
If k£ # 0, putting y = 0 in (2.15) we have

(2.16) |A(pz) — PA(z)| < M

for all x € R, with kx > d. Since A is additive and p is rational, it follows from
(2.16) that
M
| < —=
lp—P|
for all x € R, with kxz > d. If there exists g € R such that A(zg) # 0, we can

choose a rational number r such that rkxzo > d and |[rA(xg)| > FMH(it is realized

(2.17) |Az)

when r is large if kxg > 0, and when —r is large if kzg < 0). Now we have
M

lp— P| lp—P|

Thus it follows that A = 0. If P is a rational number, it follows (2.16) that

[A((p — P)z)| < M

(2.18) < |rA(zo)| = |A(rzo)| <
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for all x € R, with kx > d, which implies
(2.19) |A(z)| < M
for all € R, with k'xP > d. Similarly, using (2.19) we can show that A = 0. If

=
k = 0, choosing yy € R such that syp > d, putting y = yo in (2.15) and using the

triangle inequality we have

(2.20) |A(px) — PA(z)| < M + [A(gqyo) — QA(yo)|

for all z € R. Similarly, using (2.20) we can show that A = 0. Now the inequality
(2.14) follows from (2.5). This completes the proof. O

From Theorem 2.3, using the same approach in the proof of Theorem 2.4 we have

the following.
Theorem 2.5. Let e, d,k,s € R with k # 0 or s # 0. Suppose that p # P and p or

P is a rational number, or ¢ # Q and q or @ is a rational number, and f: R — C

satisfies
(2.21) |fpz +qy) — Pf(z) = Qf(y)| < e
for all x,y € R, with kx + sy > d. Then we have

4e
(2:22) [f(z) = f(0)] < Pl
forallz € R if s #0, and

4e
(2.23) |f(z) = F(0)] < al

forallz € R if k # 0.
We call L : Ry — C a logarithmic function provided that
L(zy) = L(x) + L(y)
for all z,y > 0. Using Theorem 2.2 we have the following.
Corollary 2.6. Lete,d >0, k,s € R, % % Z' Suppose that g : Ry — C satisfies
(2:24) lg(zPy?) — Pg(z) — Qq(y)| < €

for all z,y > 0, with x*y* > d. Then there exists a unique logarithmic function
L: Ry — C such that

(2.25) l9(x) — L(z) — g(1)] < 4e

for all x € Ry
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Proof. Replacing = by e*, y by e’ in (2.24) and setting f(z) = g(e®) we have
(2.26) |flpu+qu) = Pf(u) = Qf(v)| < e
for all u,v € R, with ku + sv > Ind. Using Theorem 2.2 we have
|[f(z) = A(z) = f(0)] < 4e
for all x € R, which implies
(2.27) l9(z) — A(lnz) — g(1)] < 4e

for all z > 0. Letting L(z) = A(Inx) we get the result. O

3. ASYMPTOTIC BEHAVIOR OF THE INEQUALITY
In this section, we consider asymptotic behaviors of the functional inequalities
(1.3) and (2.1).

Theorem 3.1. Let k,s € R satisfy one of the conditions; k # 0, s # 0. Suppose
that f : R — C satisfies the asymptotic condition

(3.1) [f(@+y) = fz) = fly)| =0

as kx 4+ sy — oco. Then f is an additive function.

Proof. By the condition (3.1), for each n € N, there exists d,, € R such that
1
[flz+y) = fl2) = fly)l <~
for all x,y € R, with kx + sy > d,,. By Theorem 2.1, there exists a unique additive
function A,, : R — C such that

(3.2) £(@) - Anz)| < 2

3

for all x € R. From (3.2), using triangle inequality we have
3 3
(3.3) |Ap(x) — Apy ()] < . + - <6

for all x € R and all positive integers n,m. Now, the inequality (3.3) implies
A, = A,,. Indeed, for all x € R and rational numbers r > 0 we have
1 6
(3.4) |Ap(x) — Ap ()] = ;|An(r:v) — Ap(rx)| < e
Letting r — oo in (3.4) we have A,, = A,,. Thus, letting n — oo in (3.2) we get the

result. O
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Theorem 3.2. Let k,s € R satisfy one of the conditions; k # 0, s # 0, % =+ 2'

Suppose that f : R — C satisfies the asymptotic condition

(3.5) |f(px +qy) = Pf(z) = Qf(y)] — 0

as kx + sy — oo. Then there exists a unique additive function A : R — C such that
(3.6) f(z) = Az) + f(0)

for all x € R.

Proof. By the condition (3.5), for each n € N, there exists d,, € R such that

SRS

(3.7) |f(px +qy) — Pf(x) —Qf(y)| <

for all z,y € R, with kx 4+ sy > d,,. By Theorem 2.2 and Theorem 2.3, there exists

a unique additive function A, : R — C such that

(3.5) 7() = Au@) = SO)] < -
if ke

(3.9) F(@) = Au(z) — £(0)] < n,“P,
if s #0, and

(3.10) F(z) = Au(z) — £(0)] < n|4Q|

if k # 0. For all cases (3.8), (3.9) and (3.10), there exists M > 0 such that
(3.11) |An() — A(a)] < M

for all x € R and all positive integers n, m. Similarly as in the proof of Theorem
3.1, it follows from (3.11) that A, = A,, for all n,m € N. Letting n — oo in (3.8),
(3.9) and (3.10) we get the result. O

Similarly using Theorem 2.4 and Theorem 2.5 we have the following.

Theorem 3.3. Let k,s € R satisfy one of the conditions; k # 0, s # 0, % #* 2.

Suppose that p = P and p or P is a rational number, or ¢ # @ and q or Q is a

rational number, and f : R — C satisfies the asymptotic condition

(3.12) [f(pz +qy) — Pf(x) = Qf(y)| — 0

as kx 4+ sy — oco. Then f is a constant function.
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4. STABILITY OF PEXIDER EQUATION IN RESTRICTED DOMAINS

Let f,g,h : R — C. We prove the Hyers-Ulam stability of the Pexider functional
inequality
[f(z+y) —g(z) —hy)| <€
in the restricted domains Il ; 4. Throughout this section s, k,d and € > 0 are fixed

real numbers.

Lemma 4.1. Suppose that k # s and f,g,h : R — C satisfy

(4.1) [f(x+y) —g(z) —h(y)| <e

for all x,y € R, with kx + sy > d. Then there exists a unique additive function
A1 : R — C such that

(4.2) (@) = Ay() — F(0)] < 4e
for all x € R.
Proof. For given z,y € R, choose a z € R such that kx + sy + (s — k)z > d, kx +
(s—k)z>d, sy+ (s—k)z>dand (s — k)z > d. Then we have
[f(z+y) = f(z) = fy) + F0)]
<|fle+y) —gle—2) - hy+2)|
(4.3) +1=f(2) +9(z = 2) + h(z)]
+ 1= fy) +9(=2) + h(y + 2)|
+1£(0) —g(=2) — h(2)|
< 4e.
Now by Theorem 1.1, there exists a unique additive function A; : R — C such that
[f(x) = Ar(z) = f(O)] < 4de
for all z € R. This completes the proof. ]
Lemma 4.2. Suppose that s # 0 and f,g,h : R — C satisfy

(4.4) [f(x+y) —g(x) = h(y)| < e

for all x,y € R, with kx + sy > d. Then there exists a unique additive function
As : R — C such that

(4.5) lg(z) — Az(z) — g(0)] < 4e
for all x € R.
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Proof. For given z,y € R, choose a z € R such that kx +ky+sz > d, kx +sy+sz >
d, ky + sz > d and sy + sz > d. Then we have
l9(x +y) — g(x) = g(y) + 9(0)]
<= flet+y+2)+9(@+y) +hz)
(4.6) +1f(@+y+2)—g(@) — Ay + 2)]
+1f(y+2) —g(y) — h(z)]
+1=Fly+2)+9(0) + Ay + 2)|
< ALe.

Now by Theorem 1.1, there exists a unique additive function As : R — C such that

lg(x) — Aa(x) — g(0)] < 4e

for all x € R. This completes the proof. O
Lemma 4.3. Suppose that k # 0 and f,g,h : R — C satisfy
(4.7) [flz+y)—g(@) —h(y)| <€

for all x,y € R, with kx + sy > d. Then there exists a unique additive function
A3z : R — C such that

(4.8) Ih(z) - Ag(x) — h(0)] < de
for all x € R.

Proof. For given x,y € R, choose a z € R such that sx +sy+kz > d, kx +sy+kz >
d, st +kz>d and kx + kz > d. Then we have

[h(z +y) = h(z) = h(y) + h(0)]
<= fl@+y+2)+9(2) + hz+y)|
(4.9) +1f(@+y+2)—g(z+2) = hly)
+1f(z +2) = g(2) — h(z)|
+|— flz+2) +g(x + 2) + h(0)|
< 4e.
Now by Theorem 1.1, there exists a unique additive function Az : R — C such that
|h(x) — Az(x) — h(0)] < 4e
for all z € R. This completes the proof. O

Now we state and prove the main theorem of this section.
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Theorem 4.4. Suppose that k,s # 0, k # s and f,g,h : R — C satisfy

(4.10) |f(x+y) —g(x) —h(y)| < e

for all x;y € R, with kx + sy > d. Then there exists a unique additive function
A:R — C such that

for all x € R.

Proof. In view of Lemma 4.1, Lemma 4.2 and Lemma 4.3, it suffices to prove that
Ay = Ay = As. For given x,y € R, choosing a z € R such that kz + sy + (s — k)z >
d, (s —k)z > d and replacing z by © — z, y by y + 2z, and x by —z, y by —z in (4.10)

we have
(4.11) [flz+y)—gl@—2)—hly+2z)| <e
(4.12) |—f(0) +g(—2) + h(2)| <.

The inequalities (4.6) and (4.9) imply

(4.13) lg(z +y) — g(z) — g(y) + g(0)] < 4e,
(4.14) |h((z +y) — h(z) — h(y) + h(0)] < 4e

for all x,y € R. Replacing y by —z in (4.13) we have
(4.15) l9(z —2) — g(x) — g(—=2) + g(0)] < 4e
for all ,y,z € R. Replacing = by z in (4.14) we have
(4.16) |h(y 4+ z) — h(z) — h(y) + h(0)| < 4e

forall z,y, z € R. From (4.11), (4.12), (4.15) and (4.16), using the triangle inequality

we have

(4.17) F@+y) — g(x) — hy) — (0) + 9(0) + h(0)] < 10¢

for all x,y € R. Using the triangle inequality and (4.2), (4.5), (4.8) and (4.17) we

have
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[A1(z +y) — Az(z) — As(y)]

<|=fl@+y)+ Az +y) + f0)
(4.18) + |g(x) — Az2(z) — g(0)| + |h(y) — As(y) — h(0)]
+ [f(z+y) — g(z) — h(y) — f(0) + g(0) + h(0)]
< 22e.

Putting y = 0 and « = 0 in (4.18) separately, and using the fact that every nonzero
additive function is unbounded as the same method of the proof in Theorem 2.4 we
have A; = A and A; = Aj. Letting A := Ay = As = A3 we complete the proof. [J

Now we consider asymptotic behaviors of the inequality (4.1).

Theorem 4.5. Let k,s € R, k # s. Suppose that f,g,h : R — C satisfy the

asymptotic condition

(4.19) [f(z+y) —g(z) = h(y)] = 0

as kx + sy — oo. Then there exists a unique additive function A : R — C such that
(4.20) f(z) = Az) + £(0)

for all x € R.

Proof. By the condition (4.19), for each n € N, there exists d,, € R such that

(121) fa+y) = g(2) i)l <

for all x,y € R, with kx + sy > d,. By Theorem 2.1, there exists a unique additive
function A, : R — C such that

(4.22) [f(x) = An(z) = F(0)] <

for all x € R. From (4.22), using the triangle inequality we have

SEE

4 4
(4.23) |Ap(x) — Ap ()] < - + - <8
for all x € R. Thus it follows from (4.23) that A,, = A, for all n,m € N. Letting
n — oo in (4.22), we get the result. O
Using Theorem 4.2 we obtain the results.
Theorem 4.6. Let s # 0. Suppose that f,g,h : R — C satisfy the asymptotic

condition

(4.24) |f(x+y) —g(z) = h(y)| — 0
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as kx + sy — oo. Then there exists a unique additive function A : R — C such that
(4.25) g(x) = A(2) + 9(0)
for all x € R.
Using Theorem 4.3 we obtain the following.
Theorem 4.7. Let k # 0. Suppose that f,g,h : R — C satisfy the asymptotic

condition

(4.26) (@ +y) - 9(@) — hy)| = 0

as kx + sy — 0o. Then there exists a unique additive function A : R — C such that
(4.27) h(z) = A(x) + h(0)

for all x € R.

Using Theorem 4.4 we obtain the following.

Theorem 4.8. Let k # 0,5 # 0 and k # s. Suppose that f,g,h: R — C satisfy the

asymptotic condition

(4.28) [f(x+y) —g(x) = h(y)] =0

as kx + sy — 0o. Then there exists a unique additive function A : R — C such that
f(@) = A) + £(0),
g9(x) = A(x) + 9(0),
h(z) = A(z) + h(0)

for all x € R.

Proof. By the condition (4.28), for each n € N, there exists d,, € R such that

1
(4.29) [fz+y) —g(z) —hly)l <
for all x,y € R, with kx + sy > d,,. By Theorem 4.4, there exists a unique additive
function R — C such that

(130 £(@) — Aula) — SO < -,
(1.31) 9(2) = An2) = 9O < -,
(4.32) 1) ~ An(z) ~ hO) <

for all x € R. Similarly as in the proof of Theorem 4.5, we can show that A, = A,
for all n,m € N. Letting n — oo in (4.30), (4.31) and (4.32) we get the result. [
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