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ASYMPTOTIC BEHAVIORS OF JENSEN TYPE FUNCTIONAL
EQUATIONS IN HALF PLANES

Sangyoup Kim a, Gyutae Kim b, Gihui Lee c, Jaeho Lee d and
Gwanghyun Park e

Abstract. Let f : R → C. We consider the Hyers-Ulam stability of Jensen type
functional inequality

|f(px + qy)− Pf(x)−Qf(y)| ≤ ε

in the half planes {(x, y) : kx + sy ≥ d} for fixed d, k, s ∈ R with k 6= 0 or s 6= 0. As
consequences of the results we obtain the asymptotic behaviors of f satisfying

|f(px + qy)− Pf(x)−Qf(y)| → 0

as kx + sy →∞.

1. Introduction

The stability problems of functional equations have originated with S. M. Ulam
in 1940 when he proposed the following problem [26]:

Let f be a mapping from a group G1 to a metric group G2 with metric d(·, ·) such
that

d(f(xy), f(x)f(y)) ≤ ε.

Then does there exist a group homomorphism h and δε > 0 such that

d(f(x), h(x)) ≤ δε

for all x ∈ G1?
As an answer for the question of Ulam, D.H. Hyers proved the following result.

Theorem 1.1. Suppose that 〈S, +〉 is an additive semigroup, ε ≥ 0, and f : S → B

with B a Banach space, satisfies the inequality

(1.1) ‖f(x + y)− f(x)− f(y)‖ ≤ ε
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for all x, y ∈ S. Then there exists a unique function A : S → B satisfying

(1.2) A(x + y) = A(x) + A(y)

for which

‖f(x)−A(x)‖ ≤ ε

for all x ∈ S.

We call the functions satisfying (1.2) additive functions. Generalizing the Hyers’
result he proved that if a mapping f : X → Y between two Banach spaces satisfies

‖f(x + y)− f(x)− f(y)‖ ≤ Φ(x, y) for x, y ∈ X

with Φ(x, y) = ε(‖x‖p + ‖y‖p) (ε ≥ 0, 0 ≤ p < 1), then there exists a unique
additive function A : X → Y such that ‖f(x) − A(x)‖ ≤ 2ε|x|p/(2 − 2p) for all
x ∈ X. In 1951, D. G. Bourgin[4] stated that if Φ is symmetric in ‖x‖ and ‖y‖
with

∑∞
j=1 Φ(2jx, 2jx)/2j < ∞ for each x ∈ X, then there exists a unique additive

function A : X → Y such that ‖f(x)− A(x)‖ ≤ ∑∞
j=1 Φ(2jx, 2jx)/2j for all x ∈ X.

Unfortunately, there were no use of these results until 1978 when Th. M. Rassias [21]
treated with the inequality of Aoki [1]. Following the Rassias’ result, a great number
of papers on the subject have been published concerning numerous functional equa-
tions in various directions [11, 13, 14, 15, 16, 18, 19, 20, 21, 25]. Among the results,
stability problem in a restricted domain was investigated by F. Skof, who proved the
stability problem of the inequality (1.1) in a restricted domain [25]. Developing this
result, S.-M. Jung, J. M. Rassias and M. J. Rassias considered the stability prob-
lems in restricted domains for the Jensen functional equation [14] and Jensen type
functional equations [19]. We also refer the reader to [2, 3, 6, 7, 8, 9, 22, 23, 24] for
some related results on Hyers-Ulam stabilities in restricted conditions. Throughout
this paper we denote by R, R+ and C the sets of real numbers, positive real num-
bers and complex numbers, respectively, f : R → C and p, q, P, Q be fixed nonzero
real numbers. In this paper we prove the Hyers-Ulam stability of the Jensen type
functional inequality

(1.3) |f(px + qy)− Pf(x)−Qf(y)| ≤ ε

in restricted domain Πk,s,d = {(x, y) ∈ R2 : kx + sy ≥ d} for fixed d, k, s ∈ R with
k 6= 0 or s 6= 0. As a consequence of the result we prove that if

|f(px + qy)− Pf(x)−Qf(y)| → 0
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as kx + sy →∞, then there exists a unique additive function A : R→ C such that

f(x) = A(x) + f(0)

for all x ∈ R.

2. Hyers-Ulam Stability of Jensen Type Equation
in Restricted Domains

We first consider the usual Cauchy functional inequality in the restricted domain
Πk,s,d = {(x, y) ∈ R2 : kx + sy ≥ d} for fixed k, s, d ∈ R with k 6= 0 or s 6= 0.

Theorem 2.1. Let ε ≥ 0, d, k, s ∈ R with k 6= 0 or s 6= 0. Suppose that f : R→ C
satisfies

(2.1) |f(x + y)− f(x)− f(y)| ≤ ε

for all x, y ∈ R, with kx + sy ≥ d. Then there exists a unique additive function
A : R→ C such that

|f(x)−A(x)| ≤ 3ε(2.2)

for all x ∈ R.

Proof. From the symmetry of the inequality we may assume that s 6= 0. For given
x, y ∈ R, choose a z ∈ R such that kx+ky+sz ≥ d, kx+sy+sz ≥ d and ky+sz ≥ d.
Then we have

|f(x + y)− f(x)− f(y)|
≤ | − f(x + y + z) + f(x + y) + f(z)|

+ |f(x + y + z)− f(x)− f(y + z)|(2.3)

+ |f(y + z)− f(y)− f(z)|
≤ 3ε.

Now by Theorem 1.1, there exists a unique additive function A : R → C such
that

|f(x)−A(x)| ≤ 3ε

for all x ∈ R. This completes the proof. ¤
Now we consider the Hyers-Ulam stability of the Jensen type functional inequality

(1.3) in the restricted domains Πk,s,d.
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Theorem 2.2. Let ε ≥ 0, d, k, s ∈ R, k
p 6= s

q . Suppose that f : R→ C satisfies

(2.4) |f(px + qy)− Pf(x)−Qf(y)| ≤ ε

for all x, y ∈ R, with kx + sy ≥ d. Then there exists a unique additive function
A : R→ C such that

|f(x)−A(x)− f(0)| ≤ 4ε(2.5)

for all x ∈ R.

Proof. Replacing x by 1
px, y by 1

qy in (2.4) we have

(2.6) |f(x + y)− Pf(
x

p
)−Qf(

y

q
)| ≤ ε

for all x, y ∈ R, with k
px + s

qy ≥ d. For given x, y ∈ R, choose a z ∈ R such that
k
px + s

qy + ( s
q − k

p )z ≥ d, k
px + ( s

q − k
p )z ≥ d, s

qy + ( s
q − k

p )z ≥ d, and ( s
q − k

p )z ≥ d.
Replacing x by x− z, y by y + z; x by x− z, y by z; x by −z, y by y + z; x by z−1,
y by z in (2.6) we have

|f(x + y)− f(x)− f(y) + f(0)|

≤
∣∣∣∣f(x + y)− Pf

(
x− z

p

)
−Qf

(
y + z

q

)∣∣∣∣

+
∣∣∣∣− f(x) + Pf

(
x− z

p

)
+ Qf

(
z

q

)∣∣∣∣(2.7)

+
∣∣∣∣− f(y) + Pf

(
− z

p

)
+ Qf

(
y + z

q

)∣∣∣∣

+
∣∣∣∣f(0)− Pf

(
− z

p

)
−Qf

(
z

q

)∣∣∣∣
≤ 4ε.

Now by Theorem 1.1, there exists a unique additive function A : R→ C such that

|f(x)−A(x)− f(0)| ≤ 4ε

for all x ∈ R. This completes the proof. ¤

Theorem 2.3. Let ε ≥ 0, d, k, s ∈ R with k 6= 0 or s 6= 0. Suppose that f : R→ C
satisfies

(2.8) |f(px + qy)− Pf(x)−Qf(y)| ≤ ε

for all x, y ∈ R, with kx + sy ≥ d. Then there exists a unique additive function
A : R→ C such that
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|f(x)−A(x)− f(0)| ≤ 4ε

|P |(2.9)

for all x ∈ R if s 6= 0, and

|f(x)−A(x)− f(0)| ≤ 4ε

|Q|(2.10)

for all x ∈ R if k 6= 0.

Proof. Assume that s 6= 0. For given x, y ∈ R, choose a z ∈ R such that kx+ky+sz ≥
d, kx + ps

q y + sz ≥ d, ky + sz ≥ d and ps
q y + sz ≥ d. Replacing x by x + y, y by z;

x by x, y by p
q y + z; x by y, y by z; x by 0, y by p

q y + z in (2.8) we have

|Pf(x + y)− Pf(x)− Pf(y) + Pf(0)|
≤ | − f(px + py + qz) + Pf(x + y) + Qf(z)|

+
∣∣∣∣f(px + py + qz)− Pf(x)−Qf

(
p

q
y + z

)∣∣∣∣(2.11)

+ |f(py + qz)− Pf(y)−Qf(z)|

+
∣∣∣∣− f(py + qz) + Pf(0) + Qf

(
p

q
y + z

)∣∣∣∣
≤ 4ε.

Dividing (2.11) by |P | and using Theorem 1.1, we obtain that there exists a unique
additive function A : R→ C such that

|f(x)−A(x)− f(0)| ≤ 4ε

|P |
for all x ∈ R. Assume that k 6= 0. For given x, y ∈ R, choose a z ∈ R such that
sx + sy + kz ≥ d, qk

p x + sy + kz ≥ d, sx + kz ≥ d and qk
p x + kz ≥ d. Replacing y

by x + y, x by z; y by y, x by q
px + z; y by x, x by z; y by 0, x by q

px + z in (2.8)
we have

|Qf(x + y)−Qf(x)−Qf(y) + Qf(0)|
≤ | − f(px + py + qz) + Pf(z) + Qf(x + y)|

+
∣∣∣∣f(qx + qy + pz)− Pf

(
q

p
x + z

)
−Qf(y)

∣∣∣∣(2.12)

+ |f(qx + pz)− Pf(z)−Qf(x)|

+
∣∣∣∣− f(qx + pz) + Pf

(
q

p
x + z

)
+ Qf(0)

∣∣∣∣
≤ 4ε.
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Dividing (2.12) by |Q| and using Theorem 1.1, we obtain that there exists a unique
additive function A : R→ C such that

|f(x)−A(x)− f(0)| ≤ 4ε

|Q|
for all x ∈ R. This completes the proof. ¤

We obtain that A = 0 in Theorem 2.2 and Theorem 2.3 provided that p 6= P and
p or P is a rational number, or q 6= Q and q or Q is a rational number. As a matter
of fact we have the followings.

Theorem 2.4. Let ε ≥ 0, d, k, s ∈ R, k
p 6= s

q . Suppose that p 6= P and p or P is a
rational number, or q 6= Q and q or Q is a rational number, and f : R→ C satisfies

(2.13) |f(px + qy)− Pf(x)−Qf(y)| ≤ ε

for all x, y ∈ R, with kx + sy ≥ d. Then we have

|f(x)− f(0)| ≤ 4ε(2.14)

for all x ∈ R.

Proof. We prove (2.14) only for the case that p 6= P and p or P is a rational number
since the other case is similarly proved. From (2.5) and (2.13), using the triangle
inequality we have

(2.15) |A(px + qy)− PA(x)−QA(y)| ≤ M

for all x, y ∈ R, with kx+ sy ≥ d, where M = ε(5+4|P |+4|Q|)+ |f(0)(1−P −Q)|.
If k 6= 0, putting y = 0 in (2.15) we have

(2.16) |A(px)− PA(x)| ≤ M

for all x ∈ R, with kx ≥ d. Since A is additive and p is rational, it follows from
(2.16) that

(2.17) |A(x)| ≤ M

|p− P |
for all x ∈ R, with kx ≥ d. If there exists x0 ∈ R such that A(x0) 6= 0, we can
choose a rational number r such that rkx0 ≥ d and |rA(x0)| > M

|p−P |(it is realized
when r is large if kx0 > 0, and when −r is large if kx0 < 0). Now we have

(2.18)
M

|p− P | < |rA(x0)| = |A(rx0)| ≤ M

|p− P | .

Thus it follows that A = 0. If P is a rational number, it follows (2.16) that

|A((p− P )x)| ≤ M
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for all x ∈ R, with kx ≥ d, which implies

(2.19) |A(x)| ≤ M

for all x ∈ R, with kx
p−P ≥ d. Similarly, using (2.19) we can show that A = 0. If

k = 0, choosing y0 ∈ R such that sy0 ≥ d, putting y = y0 in (2.15) and using the
triangle inequality we have

(2.20) |A(px)− PA(x)| ≤ M + |A(qy0)−QA(y0)|
for all x ∈ R. Similarly, using (2.20) we can show that A = 0. Now the inequality
(2.14) follows from (2.5). This completes the proof. ¤

From Theorem 2.3, using the same approach in the proof of Theorem 2.4 we have
the following.

Theorem 2.5. Let ε, d, k, s ∈ R with k 6= 0 or s 6= 0. Suppose that p 6= P and p or
P is a rational number, or q 6= Q and q or Q is a rational number, and f : R→ C
satisfies

(2.21) |f(px + qy)− Pf(x)−Qf(y)| ≤ ε

for all x, y ∈ R, with kx + sy ≥ d. Then we have

|f(x)− f(0)| ≤ 4ε

|P |(2.22)

for all x ∈ R if s 6= 0, and

|f(x)− f(0)| ≤ 4ε

|Q|(2.23)

for all x ∈ R if k 6= 0.

We call L : R+ → C a logarithmic function provided that

L(xy) = L(x) + L(y)

for all x, y > 0. Using Theorem 2.2 we have the following.

Corollary 2.6. Let ε, d > 0, k, s ∈ R, k
p 6= s

q . Suppose that g : R+ → C satisfies

(2.24) |g(xpyq)− Pg(x)−Qg(y)| ≤ ε

for all x, y > 0, with xkys ≥ d. Then there exists a unique logarithmic function
L : R+ → C such that

|g(x)− L(x)− g(1)| ≤ 4ε(2.25)

for all x ∈ R+.
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Proof. Replacing x by eu, y by ev in (2.24) and setting f(x) = g(ex) we have

(2.26) |f(pu + qv)− Pf(u)−Qf(v)| ≤ ε

for all u, v ∈ R, with ku + sv ≥ ln d. Using Theorem 2.2 we have

|f(x)−A(x)− f(0)| ≤ 4ε

for all x ∈ R, which implies

|g(x)−A(lnx)− g(1)| ≤ 4ε(2.27)

for all x > 0. Letting L(x) = A(lnx) we get the result. ¤

3. Asymptotic Behavior of the Inequality

In this section, we consider asymptotic behaviors of the functional inequalities
(1.3) and (2.1).

Theorem 3.1. Let k, s ∈ R satisfy one of the conditions; k 6= 0, s 6= 0. Suppose
that f : R→ C satisfies the asymptotic condition

(3.1) |f(x + y)− f(x)− f(y)| → 0

as kx + sy →∞. Then f is an additive function.

Proof. By the condition (3.1), for each n ∈ N, there exists dn ∈ R such that

|f(x + y)− f(x)− f(y)| ≤ 1
n

for all x, y ∈ R, with kx + sy ≥ dn. By Theorem 2.1, there exists a unique additive
function An : R→ C such that

|f(x)−An(x)| ≤ 3
n

(3.2)

for all x ∈ R. From (3.2), using triangle inequality we have

|An(x)−Am(x)| ≤ 3
n

+
3
m
≤ 6(3.3)

for all x ∈ R and all positive integers n,m. Now, the inequality (3.3) implies
An = Am. Indeed, for all x ∈ R and rational numbers r > 0 we have

|An(x)−Am(x)| = 1
r
|An(rx)−Am(rx)| ≤ 6

r
.(3.4)

Letting r →∞ in (3.4) we have An = Am. Thus, letting n →∞ in (3.2) we get the
result. ¤
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Theorem 3.2. Let k, s ∈ R satisfy one of the conditions; k 6= 0, s 6= 0, k
p 6= s

q .
Suppose that f : R→ C satisfies the asymptotic condition

(3.5) |f(px + qy)− Pf(x)−Qf(y)| → 0

as kx + sy →∞. Then there exists a unique additive function A : R→ C such that

f(x) = A(x) + f(0)(3.6)

for all x ∈ R.

Proof. By the condition (3.5), for each n ∈ N, there exists dn ∈ R such that

(3.7) |f(px + qy)− Pf(x)−Qf(y)| ≤ 1
n

for all x, y ∈ R, with kx + sy ≥ dn. By Theorem 2.2 and Theorem 2.3, there exists
a unique additive function An : R→ C such that

|f(x)−An(x)− f(0)| ≤ 4
n

(3.8)

if k
p 6= s

q ,

|f(x)−An(x)− f(0)| ≤ 4
n|P |(3.9)

if s 6= 0, and

|f(x)−An(x)− f(0)| ≤ 4
n|Q|(3.10)

if k 6= 0. For all cases (3.8), (3.9) and (3.10), there exists M > 0 such that

|An(x)−Am(x)| ≤ M(3.11)

for all x ∈ R and all positive integers n,m. Similarly as in the proof of Theorem
3.1, it follows from (3.11) that An = Am for all n, m ∈ N. Letting n → ∞ in (3.8),
(3.9) and (3.10) we get the result. ¤

Similarly using Theorem 2.4 and Theorem 2.5 we have the following.

Theorem 3.3. Let k, s ∈ R satisfy one of the conditions; k 6= 0, s 6= 0, k
p 6= s

q .
Suppose that p 6= P and p or P is a rational number, or q 6= Q and q or Q is a
rational number, and f : R→ C satisfies the asymptotic condition

(3.12) |f(px + qy)− Pf(x)−Qf(y)| → 0

as kx + sy →∞. Then f is a constant function.
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4. Stability of Pexider Equation in Restricted Domains

Let f, g, h : R→ C. We prove the Hyers-Ulam stability of the Pexider functional
inequality

|f(x + y)− g(x)− h(y)| ≤ ε

in the restricted domains Πk,s,d. Throughout this section s, k, d and ε ≥ 0 are fixed
real numbers.

Lemma 4.1. Suppose that k 6= s and f, g, h : R→ C satisfy

(4.1) |f(x + y)− g(x)− h(y)| ≤ ε

for all x, y ∈ R, with kx + sy ≥ d. Then there exists a unique additive function
A1 : R→ C such that

|f(x)−A1(x)− f(0)| ≤ 4ε(4.2)

for all x ∈ R.

Proof. For given x, y ∈ R, choose a z ∈ R such that kx + sy + (s − k)z ≥ d, kx +
(s− k)z ≥ d, sy + (s− k)z ≥ d and (s− k)z ≥ d. Then we have

|f(x + y)− f(x)− f(y) + f(0)|
≤ |f(x + y)− g(x− z)− h(y + z)|

+ | − f(x) + g(x− z) + h(z)|(4.3)

+ | − f(y) + g(−z) + h(y + z)|
+ |f(0)− g(−z)− h(z)|

≤ 4ε.

Now by Theorem 1.1, there exists a unique additive function A1 : R→ C such that

|f(x)−A1(x)− f(0)| ≤ 4ε

for all x ∈ R. This completes the proof. ¤

Lemma 4.2. Suppose that s 6= 0 and f, g, h : R→ C satisfy

(4.4) |f(x + y)− g(x)− h(y)| ≤ ε

for all x, y ∈ R, with kx + sy ≥ d. Then there exists a unique additive function
A2 : R→ C such that

|g(x)−A2(x)− g(0)| ≤ 4ε(4.5)

for all x ∈ R.
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Proof. For given x, y ∈ R, choose a z ∈ R such that kx+ky+sz ≥ d, kx+sy+sz ≥
d, ky + sz ≥ d and sy + sz ≥ d. Then we have

|g(x + y)− g(x)− g(y) + g(0)|
≤ | − f(x + y + z) + g(x + y) + h(z)|

+ |f(x + y + z)− g(x)− h(y + z)|(4.6)

+ |f(y + z)− g(y)− h(z)|
+ | − f(y + z) + g(0) + h(y + z)|

≤ 4ε.

Now by Theorem 1.1, there exists a unique additive function A2 : R→ C such that

|g(x)−A2(x)− g(0)| ≤ 4ε

for all x ∈ R. This completes the proof. ¤
Lemma 4.3. Suppose that k 6= 0 and f, g, h : R→ C satisfy

(4.7) |f(x + y)− g(x)− h(y)| ≤ ε

for all x, y ∈ R, with kx + sy ≥ d. Then there exists a unique additive function
A3 : R→ C such that

|h(x)−A3(x)− h(0)| ≤ 4ε(4.8)

for all x ∈ R.

Proof. For given x, y ∈ R, choose a z ∈ R such that sx+sy+kz ≥ d, kx+sy+kz ≥
d, sx + kz ≥ d and kx + kz ≥ d. Then we have

|h(x + y)− h(x)− h(y) + h(0)|
≤ | − f(x + y + z) + g(z) + h(x + y)|

+ |f(x + y + z)− g(x + z)− h(y)|(4.9)

+ |f(z + x)− g(z)− h(x)|
+ | − f(x + z) + g(x + z) + h(0)|

≤ 4ε.

Now by Theorem 1.1, there exists a unique additive function A3 : R→ C such that

|h(x)−A3(x)− h(0)| ≤ 4ε

for all x ∈ R. This completes the proof. ¤
Now we state and prove the main theorem of this section.
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Theorem 4.4. Suppose that k, s 6= 0, k 6= s and f, g, h : R→ C satisfy

(4.10) |f(x + y)− g(x)− h(y)| ≤ ε

for all x, y ∈ R, with kx + sy ≥ d. Then there exists a unique additive function
A : R→ C such that

|f(x)−A(x)− f(0)| ≤ 4ε,

|g(x)−A(x)− g(0)| ≤ 4ε,

|h(x)−A(x)− h(0)| ≤ 4ε,

for all x ∈ R.

Proof. In view of Lemma 4.1, Lemma 4.2 and Lemma 4.3, it suffices to prove that
A1 = A2 = A3. For given x, y ∈ R, choosing a z ∈ R such that kx + sy + (s− k)z ≥
d, (s− k)z ≥ d and replacing x by x− z, y by y + z, and x by −z, y by −z in (4.10)
we have

|f(x + y)− g(x− z)− h(y + z)| ≤ ε,(4.11)

|−f(0) + g(−z) + h(z)| ≤ ε.(4.12)

The inequalities (4.6) and (4.9) imply

|g(x + y)− g(x)− g(y) + g(0)| ≤ 4ε,(4.13)

|h((x + y)− h(x)− h(y) + h(0)| ≤ 4ε(4.14)

for all x, y ∈ R. Replacing y by −z in (4.13) we have

|g(x− z)− g(x)− g(−z) + g(0)| ≤ 4ε(4.15)

for all x, y, z ∈ R. Replacing x by z in (4.14) we have

|h(y + z)− h(z)− h(y) + h(0)| ≤ 4ε(4.16)

for all x, y, z ∈ R. From (4.11), (4.12), (4.15) and (4.16), using the triangle inequality
we have

(4.17) |f(x + y)− g(x)− h(y)− f(0) + g(0) + h(0)| ≤ 10ε

for all x, y ∈ R. Using the triangle inequality and (4.2), (4.5), (4.8) and (4.17) we
have
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|A1(x + y)−A2(x)−A3(y)|
≤ | − f(x + y) + A1(x + y) + f(0)|

+ |g(x)−A2(x)− g(0)|+ |h(y)−A3(y)− h(0)|(4.18)

+ |f(x + y)− g(x)− h(y)− f(0) + g(0) + h(0)|
≤ 22ε.

Putting y = 0 and x = 0 in (4.18) separately, and using the fact that every nonzero
additive function is unbounded as the same method of the proof in Theorem 2.4 we
have A1 = A2 and A1 = A3. Letting A := A1 = A2 = A3 we complete the proof. ¤

Now we consider asymptotic behaviors of the inequality (4.1).

Theorem 4.5. Let k, s ∈ R, k 6= s. Suppose that f, g, h : R → C satisfy the
asymptotic condition

(4.19) |f(x + y)− g(x)− h(y)| → 0

as kx + sy →∞. Then there exists a unique additive function A : R→ C such that

f(x) = A(x) + f(0)(4.20)

for all x ∈ R.

Proof. By the condition (4.19), for each n ∈ N, there exists dn ∈ R such that

(4.21) |f(x + y)− g(x)− h(y)| ≤ 1
n

for all x, y ∈ R, with kx + sy ≥ dn. By Theorem 2.1, there exists a unique additive
function An : R→ C such that

|f(x)−An(x)− f(0)| ≤ 4
n

(4.22)

for all x ∈ R. From (4.22), using the triangle inequality we have

|An(x)−Am(x)| ≤ 4
n

+
4
m
≤ 8(4.23)

for all x ∈ R. Thus it follows from (4.23) that An = Am for all n,m ∈ N. Letting
n →∞ in (4.22), we get the result. ¤

Using Theorem 4.2 we obtain the results.

Theorem 4.6. Let s 6= 0. Suppose that f, g, h : R → C satisfy the asymptotic
condition

(4.24) |f(x + y)− g(x)− h(y)| → 0
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as kx + sy →∞. Then there exists a unique additive function A : R→ C such that

g(x) = A(x) + g(0)(4.25)

for all x ∈ R.

Using Theorem 4.3 we obtain the following.

Theorem 4.7. Let k 6= 0. Suppose that f, g, h : R → C satisfy the asymptotic
condition

(4.26) |f(x + y)− g(x)− h(y)| → 0

as kx + sy →∞. Then there exists a unique additive function A : R→ C such that

h(x) = A(x) + h(0)(4.27)

for all x ∈ R.

Using Theorem 4.4 we obtain the following.

Theorem 4.8. Let k 6= 0, s 6= 0 and k 6= s. Suppose that f, g, h : R→ C satisfy the
asymptotic condition

(4.28) |f(x + y)− g(x)− h(y)| → 0

as kx + sy →∞. Then there exists a unique additive function A : R→ C such that

f(x) = A(x) + f(0),

g(x) = A(x) + g(0),

h(x) = A(x) + h(0)

for all x ∈ R.

Proof. By the condition (4.28), for each n ∈ N, there exists dn ∈ R such that

(4.29) |f(x + y)− g(x)− h(y)| ≤ 1
n

for all x, y ∈ R, with kx + sy ≥ dn. By Theorem 4.4, there exists a unique additive
function R→ C such that

|f(x)−An(x)− f(0)| ≤ 4
n

,(4.30)

|g(x)−An(x)− g(0)| ≤ 4
n

,(4.31)

|h(x)−An(x)− h(0)| ≤ 4
n

(4.32)

for all x ∈ R. Similarly as in the proof of Theorem 4.5, we can show that An = Am

for all n, m ∈ N. Letting n →∞ in (4.30), (4.31) and (4.32) we get the result. ¤
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