ISSN 1226-0657

J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. Volume 18, Number 2 (May 2011), Pages 113–128

ASYMPTOTIC BEHAVIORS OF JENSEN TYPE FUNCTIONAL EQUATIONS IN HALF PLANES

Sangyoup Kim^a, Gyutae Kim^b, Gihui Lee^c, Jaeho Lee^d and Gwanghyun Park^e

ABSTRACT. Let $f : \mathbb{R} \to \mathbb{C}$. We consider the Hyers-Ulam stability of Jensen type functional inequality

$$|f(px+qy) - Pf(x) - Qf(y)| \le \epsilon$$

in the half planes $\{(x, y) : kx + sy \ge d\}$ for fixed $d, k, s \in \mathbb{R}$ with $k \ne 0$ or $s \ne 0$. As consequences of the results we obtain the asymptotic behaviors of f satisfying

 $|f(px+qy) - Pf(x) - Qf(y)| \to 0$

as $kx + sy \to \infty$.

1. INTRODUCTION

The stability problems of functional equations have originated with S. M. Ulam in 1940 when he proposed the following problem [26]:

Let f be a mapping from a group G_1 to a metric group G_2 with metric $d(\cdot, \cdot)$ such that

 $d(f(xy), f(x)f(y)) \le \varepsilon.$

Then does there exist a group homomorphism h and $\delta_{\epsilon} > 0$ such that

 $d(f(x), h(x)) \le \delta_{\epsilon}$

for all $x \in G_1$?

As an answer for the question of Ulam, D. H. Hyers proved the following result.

Theorem 1.1. Suppose that $\langle S, + \rangle$ is an additive semigroup, $\epsilon \ge 0$, and $f: S \to B$ with B a Banach space, satisfies the inequality

(1.1)
$$||f(x+y) - f(x) - f(y)|| \le \epsilon$$

© 2011 Korean Soc. Math. Educ.

Received by the editors November 6, 2010. Revised March 7, 2011. Accepted March 16, 2011. 2000 *Mathematics Subject Classification*. 39B82.

Key words and phrases. Hyers-Ulam stability, Jensen type functional equation, Pexider equation.

for all $x, y \in S$. Then there exists a unique function $A: S \to B$ satisfying

(1.2)
$$A(x+y) = A(x) + A(y)$$

for which

 $||f(x) - A(x)|| \le \epsilon$

for all $x \in S$.

We call the functions satisfying (1.2) additive functions. Generalizing the Hyers' result he proved that if a mapping $f: X \to Y$ between two Banach spaces satisfies

$$||f(x+y) - f(x) - f(y)|| \le \Phi(x,y) \quad \text{for } x, y \in X$$

with $\Phi(x,y) = \epsilon(||x||^p + ||y||^p) (\epsilon \ge 0, 0 \le p < 1)$, then there exists a unique additive function $A: X \to Y$ such that $||f(x) - A(x)|| \leq 2\epsilon |x|^p/(2-2^p)$ for all $x \in X$. In 1951, D.G. Bourgin[4] stated that if Φ is symmetric in ||x|| and ||y||with $\sum_{i=1}^{\infty} \Phi(2^j x, 2^j x)/2^j < \infty$ for each $x \in X$, then there exists a unique additive function $A: X \to Y$ such that $||f(x) - A(x)|| \le \sum_{j=1}^{\infty} \Phi(2^j x, 2^j x)/2^j$ for all $x \in X$. Unfortunately, there were no use of these results until 1978 when Th. M. Rassias [21] treated with the inequality of Aoki [1]. Following the Rassias' result, a great number of papers on the subject have been published concerning numerous functional equations in various directions [11, 13, 14, 15, 16, 18, 19, 20, 21, 25]. Among the results, stability problem in a restricted domain was investigated by F. Skof, who proved the stability problem of the inequality (1.1) in a restricted domain [25]. Developing this result, S.-M. Jung, J. M. Rassias and M. J. Rassias considered the stability problems in restricted domains for the Jensen functional equation [14] and Jensen type functional equations [19]. We also refer the reader to [2, 3, 6, 7, 8, 9, 22, 23, 24] for some related results on Hyers-Ulam stabilities in restricted conditions. Throughout this paper we denote by \mathbb{R} , \mathbb{R}_+ and \mathbb{C} the sets of real numbers, positive real numbers and complex numbers, respectively, $f: \mathbb{R} \to \mathbb{C}$ and p, q, P, Q be fixed nonzero real numbers. In this paper we prove the Hyers-Ulam stability of the Jensen type functional inequality

(1.3)
$$|f(px+qy) - Pf(x) - Qf(y)| \le \epsilon$$

in restricted domain $\Pi_{k,s,d} = \{(x,y) \in \mathbb{R}^2 : kx + sy \ge d\}$ for fixed $d, k, s \in \mathbb{R}$ with $k \ne 0$ or $s \ne 0$. As a consequence of the result we prove that if

$$|f(px+qy) - Pf(x) - Qf(y)| \to 0$$

as $kx + sy \to \infty$, then there exists a unique additive function $A : \mathbb{R} \to \mathbb{C}$ such that

$$f(x) = A(x) + f(0)$$

for all $x \in \mathbb{R}$.

2. Hyers-Ulam Stability of Jensen Type Equation in Restricted Domains

We first consider the usual Cauchy functional inequality in the restricted domain $\Pi_{k,s,d} = \{(x,y) \in \mathbb{R}^2 : kx + sy \ge d\}$ for fixed $k, s, d \in \mathbb{R}$ with $k \ne 0$ or $s \ne 0$.

Theorem 2.1. Let $\epsilon \geq 0$, $d, k, s \in \mathbb{R}$ with $k \neq 0$ or $s \neq 0$. Suppose that $f : \mathbb{R} \to \mathbb{C}$ satisfies

$$|f(x+y) - f(x) - f(y)| \le \epsilon$$

for all $x, y \in \mathbb{R}$, with $kx + sy \ge d$. Then there exists a unique additive function $A : \mathbb{R} \to \mathbb{C}$ such that

$$(2.2) |f(x) - A(x)| \le 3\epsilon$$

for all $x \in \mathbb{R}$.

Proof. From the symmetry of the inequality we may assume that $s \neq 0$. For given $x, y \in \mathbb{R}$, choose a $z \in \mathbb{R}$ such that $kx + ky + sz \ge d$, $kx + sy + sz \ge d$ and $ky + sz \ge d$. Then we have

(2.3)

$$|f(x+y) - f(x) - f(y)| \leq |-f(x+y+z) + f(x+y) + f(z)| + |f(x+y+z) - f(x) - f(y+z)| + |f(y+z) - f(y) - f(z)| \leq 3\epsilon.$$

Now by Theorem 1.1, there exists a unique additive function $A: \mathbb{R} \to \mathbb{C}$ such that

$$|f(x) - A(x)| \le 3\epsilon$$

for all $x \in \mathbb{R}$. This completes the proof.

Now we consider the Hyers-Ulam stability of the Jensen type functional inequality (1.3) in the restricted domains $\Pi_{k,s,d}$.

116 SANGYOUP KIM, GYUTAE KIM, GIHUI LEE, JAEHO LEE & GWANGHYUN PARK

Theorem 2.2. Let $\epsilon \geq 0, d, k, s \in \mathbb{R}, \frac{k}{p} \neq \frac{s}{q}$. Suppose that $f : \mathbb{R} \to \mathbb{C}$ satisfies

(2.4)
$$|f(px+qy) - Pf(x) - Qf(y)| \le \epsilon$$

for all $x, y \in \mathbb{R}$, with $kx + sy \ge d$. Then there exists a unique additive function $A : \mathbb{R} \to \mathbb{C}$ such that

(2.5)
$$|f(x) - A(x) - f(0)| \le 4\epsilon$$

for all $x \in \mathbb{R}$.

Proof. Replacing x by $\frac{1}{p}x$, y by $\frac{1}{q}y$ in (2.4) we have

(2.6)
$$|f(x+y) - Pf(\frac{x}{p}) - Qf(\frac{y}{q})| \le \epsilon$$

for all $x, y \in \mathbb{R}$, with $\frac{k}{p}x + \frac{s}{q}y \ge d$. For given $x, y \in \mathbb{R}$, choose a $z \in \mathbb{R}$ such that $\frac{k}{p}x + \frac{s}{q}y + (\frac{s}{q} - \frac{k}{p})z \ge d$, $\frac{k}{p}x + (\frac{s}{q} - \frac{k}{p})z \ge d$, $\frac{s}{q}y + (\frac{s}{q} - \frac{k}{p})z \ge d$, and $(\frac{s}{q} - \frac{k}{p})z \ge d$. Replacing x by x - z, y by y + z; x by x - z, y by z; x by -z, y by y + z; x by z^{-1} , y by z in (2.6) we have

$$|f(x+y) - f(x) - f(y) + f(0)|$$

$$\leq \left| f(x+y) - Pf\left(\frac{x-z}{p}\right) - Qf\left(\frac{y+z}{q}\right) \right|$$

$$+ \left| -f(x) + Pf\left(\frac{x-z}{p}\right) + Qf\left(\frac{z}{q}\right) \right|$$

$$+ \left| -f(y) + Pf\left(-\frac{z}{p}\right) + Qf\left(\frac{y+z}{q}\right) \right|$$

$$+ \left| f(0) - Pf\left(-\frac{z}{p}\right) - Qf\left(\frac{z}{q}\right) \right|$$

$$\leq 4\epsilon.$$

Now by Theorem 1.1, there exists a unique additive function $A: \mathbb{R} \to \mathbb{C}$ such that

$$|f(x) - A(x) - f(0)| \le 4\epsilon$$

for all $x \in \mathbb{R}$. This completes the proof.

Theorem 2.3. Let $\epsilon \geq 0$, $d, k, s \in \mathbb{R}$ with $k \neq 0$ or $s \neq 0$. Suppose that $f : \mathbb{R} \to \mathbb{C}$ satisfies

(2.8)
$$|f(px+qy) - Pf(x) - Qf(y)| \le \epsilon$$

for all $x, y \in \mathbb{R}$, with $kx + sy \ge d$. Then there exists a unique additive function $A : \mathbb{R} \to \mathbb{C}$ such that

(2.9)
$$|f(x) - A(x) - f(0)| \le \frac{4\epsilon}{|P|}$$

for all $x \in \mathbb{R}$ if $s \neq 0$, and

(2.10)
$$|f(x) - A(x) - f(0)| \le \frac{4\epsilon}{|Q|}$$

for all $x \in \mathbb{R}$ if $k \neq 0$.

Proof. Assume that $s \neq 0$. For given $x, y \in \mathbb{R}$, choose a $z \in \mathbb{R}$ such that $kx + ky + sz \ge d$, $kx + \frac{ps}{q}y + sz \ge d$, $ky + sz \ge d$ and $\frac{ps}{q}y + sz \ge d$. Replacing x by x + y, y by z; x by x, y by $\frac{p}{q}y + z$; x by y, y by z; x by 0, y by $\frac{p}{q}y + z$ in (2.8) we have

$$|Pf(x+y) - Pf(x) - Pf(y) + Pf(0)|$$

$$\leq |-f(px+py+qz) + Pf(x+y) + Qf(z)|$$

$$+ \left|f(px+py+qz) - Pf(x) - Qf\left(\frac{p}{q}y+z\right)\right|$$

$$+ |f(py+qz) - Pf(y) - Qf(z)|$$

$$+ \left|-f(py+qz) + Pf(0) + Qf\left(\frac{p}{q}y+z\right)\right|$$

$$\leq 4\epsilon.$$

Dividing (2.11) by |P| and using Theorem 1.1, we obtain that there exists a unique additive function $A : \mathbb{R} \to \mathbb{C}$ such that

$$|f(x) - A(x) - f(0)| \le \frac{4\epsilon}{|P|}$$

for all $x \in \mathbb{R}$. Assume that $k \neq 0$. For given $x, y \in \mathbb{R}$, choose a $z \in \mathbb{R}$ such that $sx + sy + kz \geq d$, $\frac{qk}{p}x + sy + kz \geq d$, $sx + kz \geq d$ and $\frac{qk}{p}x + kz \geq d$. Replacing y by x + y, x by z; y by y, x by $\frac{q}{p}x + z$; y by x, x by z; y by 0, x by $\frac{q}{p}x + z$ in (2.8) we have

$$|Qf(x+y) - Qf(x) - Qf(y) + Qf(0)|$$

$$\leq |-f(px+py+qz) + Pf(z) + Qf(x+y)|$$

$$+ \left| f(qx+qy+pz) - Pf\left(\frac{q}{p}x+z\right) - Qf(y) + |f(qx+pz) - Pf(z) - Qf(x)| + \left| -f(qx+pz) + Pf\left(\frac{q}{p}x+z\right) + Qf(0) \right|$$

$$\leq 4\epsilon.$$

Dividing (2.12) by |Q| and using Theorem 1.1, we obtain that there exists a unique additive function $A : \mathbb{R} \to \mathbb{C}$ such that

$$|f(x) - A(x) - f(0)| \le \frac{4\epsilon}{|Q|}$$

for all $x \in \mathbb{R}$. This completes the proof.

We obtain that A = 0 in Theorem 2.2 and Theorem 2.3 provided that $p \neq P$ and p or P is a rational number, or $q \neq Q$ and q or Q is a rational number. As a matter of fact we have the followings.

Theorem 2.4. Let $\epsilon \ge 0, d, k, s \in \mathbb{R}, \frac{k}{p} \ne \frac{s}{q}$. Suppose that $p \ne P$ and p or P is a rational number, or $q \ne Q$ and q or Q is a rational number, and $f : \mathbb{R} \to \mathbb{C}$ satisfies

$$(2.13) |f(px+qy) - Pf(x) - Qf(y)| \le \epsilon$$

for all $x, y \in \mathbb{R}$, with $kx + sy \ge d$. Then we have

(2.14)
$$|f(x) - f(0)| \le 4\epsilon$$

for all $x \in \mathbb{R}$.

Proof. We prove (2.14) only for the case that $p \neq P$ and p or P is a rational number since the other case is similarly proved. From (2.5) and (2.13), using the triangle inequality we have

$$|A(px+qy) - PA(x) - QA(y)| \le M$$

for all $x, y \in \mathbb{R}$, with $kx + sy \ge d$, where $M = \epsilon(5+4|P|+4|Q|) + |f(0)(1-P-Q)|$. If $k \ne 0$, putting y = 0 in (2.15) we have

$$(2.16) \qquad |A(px) - PA(x)| \le M$$

for all $x \in \mathbb{R}$, with $kx \ge d$. Since A is additive and p is rational, it follows from (2.16) that

$$|A(x)| \le \frac{M}{|p-P|}$$

for all $x \in \mathbb{R}$, with $kx \ge d$. If there exists $x_0 \in \mathbb{R}$ such that $A(x_0) \ne 0$, we can choose a rational number r such that $rkx_0 \ge d$ and $|rA(x_0)| > \frac{M}{|p-P|}$ (it is realized when r is large if $kx_0 > 0$, and when -r is large if $kx_0 < 0$). Now we have

(2.18)
$$\frac{M}{|p-P|} < |rA(x_0)| = |A(rx_0)| \le \frac{M}{|p-P|}$$

Thus it follows that A = 0. If P is a rational number, it follows (2.16) that

$$|A((p-P)x)| \le M$$

for all $x \in \mathbb{R}$, with $kx \ge d$, which implies

$$(2.19) |A(x)| \le M$$

for all $x \in \mathbb{R}$, with $\frac{kx}{p-P} \ge d$. Similarly, using (2.19) we can show that A = 0. If k = 0, choosing $y_0 \in \mathbb{R}$ such that $sy_0 \ge d$, putting $y = y_0$ in (2.15) and using the triangle inequality we have

(2.20)
$$|A(px) - PA(x)| \le M + |A(qy_0) - QA(y_0)|$$

for all $x \in \mathbb{R}$. Similarly, using (2.20) we can show that A = 0. Now the inequality (2.14) follows from (2.5). This completes the proof.

From Theorem 2.3, using the same approach in the proof of Theorem 2.4 we have the following.

Theorem 2.5. Let ϵ , $d, k, s \in \mathbb{R}$ with $k \neq 0$ or $s \neq 0$. Suppose that $p \neq P$ and p or P is a rational number, or $q \neq Q$ and q or Q is a rational number, and $f : \mathbb{R} \to \mathbb{C}$ satisfies

$$(2.21) |f(px+qy) - Pf(x) - Qf(y)| \le \epsilon$$

for all $x, y \in \mathbb{R}$, with $kx + sy \ge d$. Then we have

(2.22)
$$|f(x) - f(0)| \le \frac{4\epsilon}{|P|}$$

for all $x \in \mathbb{R}$ if $s \neq 0$, and

(2.23)
$$|f(x) - f(0)| \le \frac{4\epsilon}{|Q|}$$

for all $x \in \mathbb{R}$ if $k \neq 0$.

We call $L: \mathbb{R}_+ \to \mathbb{C}$ a logarithmic function provided that

$$L(xy) = L(x) + L(y)$$

for all x, y > 0. Using Theorem 2.2 we have the following.

Corollary 2.6. Let $\epsilon, d > 0, k, s \in \mathbb{R}, \frac{k}{p} \neq \frac{s}{q}$. Suppose that $g : \mathbb{R}_+ \to \mathbb{C}$ satisfies

$$|g(x^p y^q) - Pg(x) - Qg(y)| \le \epsilon$$

for all x, y > 0, with $x^k y^s \ge d$. Then there exists a unique logarithmic function $L : \mathbb{R}_+ \to \mathbb{C}$ such that

(2.25)
$$|g(x) - L(x) - g(1)| \le 4\epsilon$$

for all $x \in \mathbb{R}_+$.

Proof. Replacing x by e^{u} , y by e^{v} in (2.24) and setting $f(x) = g(e^{x})$ we have

$$(2.26) |f(pu+qv) - Pf(u) - Qf(v)| \le \epsilon$$

for all $u, v \in \mathbb{R}$, with $ku + sv \ge \ln d$. Using Theorem 2.2 we have

$$|f(x) - A(x) - f(0)| \le 4\epsilon$$

for all $x \in \mathbb{R}$, which implies

(2.27)
$$|g(x) - A(\ln x) - g(1)| \le 4\epsilon$$

for all x > 0. Letting $L(x) = A(\ln x)$ we get the result.

3. Asymptotic Behavior of the Inequality

In this section, we consider asymptotic behaviors of the functional inequalities (1.3) and (2.1).

Theorem 3.1. Let $k, s \in \mathbb{R}$ satisfy one of the conditions; $k \neq 0, s \neq 0$. Suppose that $f : \mathbb{R} \to \mathbb{C}$ satisfies the asymptotic condition

(3.1)
$$|f(x+y) - f(x) - f(y)| \to 0$$

as $kx + sy \rightarrow \infty$. Then f is an additive function.

Proof. By the condition (3.1), for each $n \in \mathbb{N}$, there exists $d_n \in \mathbb{R}$ such that

$$|f(x+y) - f(x) - f(y)| \le \frac{1}{n}$$

for all $x, y \in \mathbb{R}$, with $kx + sy \ge d_n$. By Theorem 2.1, there exists a unique additive function $A_n : \mathbb{R} \to \mathbb{C}$ such that

(3.2)
$$|f(x) - A_n(x)| \le \frac{3}{n}$$

for all $x \in \mathbb{R}$. From (3.2), using triangle inequality we have

(3.3)
$$|A_n(x) - A_m(x)| \le \frac{3}{n} + \frac{3}{m} \le 6$$

for all $x \in \mathbb{R}$ and all positive integers n, m. Now, the inequality (3.3) implies $A_n = A_m$. Indeed, for all $x \in \mathbb{R}$ and rational numbers r > 0 we have

(3.4)
$$|A_n(x) - A_m(x)| = \frac{1}{r} |A_n(rx) - A_m(rx)| \le \frac{6}{r}.$$

Letting $r \to \infty$ in (3.4) we have $A_n = A_m$. Thus, letting $n \to \infty$ in (3.2) we get the result.

Theorem 3.2. Let $k, s \in \mathbb{R}$ satisfy one of the conditions; $k \neq 0, s \neq 0, \frac{k}{p} \neq \frac{s}{q}$. Suppose that $f : \mathbb{R} \to \mathbb{C}$ satisfies the asymptotic condition

$$(3.5) |f(px+qy) - Pf(x) - Qf(y)| \to 0$$

as $kx + sy \to \infty$. Then there exists a unique additive function $A : \mathbb{R} \to \mathbb{C}$ such that

(3.6)
$$f(x) = A(x) + f(0)$$

for all $x \in \mathbb{R}$.

Proof. By the condition (3.5), for each $n \in \mathbb{N}$, there exists $d_n \in \mathbb{R}$ such that

(3.7)
$$|f(px+qy) - Pf(x) - Qf(y)| \le \frac{1}{n}$$

for all $x, y \in \mathbb{R}$, with $kx + sy \ge d_n$. By Theorem 2.2 and Theorem 2.3, there exists a unique additive function $A_n : \mathbb{R} \to \mathbb{C}$ such that

(3.8)
$$|f(x) - A_n(x) - f(0)| \le \frac{4}{n}$$

if $\frac{k}{p} \neq \frac{s}{q}$,

(3.9)
$$|f(x) - A_n(x) - f(0)| \le \frac{4}{n|P}$$

if $s \neq 0$, and

(3.10)
$$|f(x) - A_n(x) - f(0)| \le \frac{4}{n|Q|}$$

if $k \neq 0$. For all cases (3.8), (3.9) and (3.10), there exists M > 0 such that

$$(3.11) |A_n(x) - A_m(x)| \le M$$

for all $x \in \mathbb{R}$ and all positive integers n, m. Similarly as in the proof of Theorem 3.1, it follows from (3.11) that $A_n = A_m$ for all $n, m \in \mathbb{N}$. Letting $n \to \infty$ in (3.8), (3.9) and (3.10) we get the result.

Similarly using Theorem 2.4 and Theorem 2.5 we have the following.

Theorem 3.3. Let $k, s \in \mathbb{R}$ satisfy one of the conditions; $k \neq 0, s \neq 0, \frac{k}{p} \neq \frac{s}{q}$. Suppose that $p \neq P$ and p or P is a rational number, or $q \neq Q$ and q or Q is a rational number, and $f : \mathbb{R} \to \mathbb{C}$ satisfies the asymptotic condition

$$(3.12) \qquad \qquad |f(px+qy) - Pf(x) - Qf(y)| \to 0$$

as $kx + sy \rightarrow \infty$. Then f is a constant function.

4. STABILITY OF PEXIDER EQUATION IN RESTRICTED DOMAINS

Let $f, g, h : \mathbb{R} \to \mathbb{C}$. We prove the Hyers-Ulam stability of the Pexider functional inequality

$$|f(x+y) - g(x) - h(y)| \le \epsilon$$

in the restricted domains $\Pi_{k,s,d}$. Throughout this section s, k, d and $\epsilon \ge 0$ are fixed real numbers.

Lemma 4.1. Suppose that $k \neq s$ and $f, g, h : \mathbb{R} \to \mathbb{C}$ satisfy

(4.1)
$$|f(x+y) - g(x) - h(y)| \le \epsilon$$

for all $x, y \in \mathbb{R}$, with $kx + sy \ge d$. Then there exists a unique additive function $A_1 : \mathbb{R} \to \mathbb{C}$ such that

(4.2)
$$|f(x) - A_1(x) - f(0)| \le 4\epsilon$$

for all $x \in \mathbb{R}$.

Proof. For given $x, y \in \mathbb{R}$, choose a $z \in \mathbb{R}$ such that $kx + sy + (s - k)z \ge d$, $kx + (s - k)z \ge d$, $sy + (s - k)z \ge d$ and $(s - k)z \ge d$. Then we have

(4.3)

$$|f(x+y) - f(x) - f(y) + f(0)|$$

$$\leq |f(x+y) - g(x-z) - h(y+z)|$$

$$+ |-f(x) + g(x-z) + h(z)|$$

$$+ |-f(y) + g(-z) + h(y+z)|$$

$$+ |f(0) - g(-z) - h(z)|$$

$$\leq 4\epsilon.$$

Now by Theorem 1.1, there exists a unique additive function $A_1 : \mathbb{R} \to \mathbb{C}$ such that

$$|f(x) - A_1(x) - f(0)| \le 4\epsilon$$

for all $x \in \mathbb{R}$. This completes the proof.

Lemma 4.2. Suppose that $s \neq 0$ and $f, g, h : \mathbb{R} \to \mathbb{C}$ satisfy

(4.4)
$$|f(x+y) - g(x) - h(y)| \le \epsilon$$

for all $x, y \in \mathbb{R}$, with $kx + sy \ge d$. Then there exists a unique additive function $A_2 : \mathbb{R} \to \mathbb{C}$ such that

(4.5)
$$|g(x) - A_2(x) - g(0)| \le 4\epsilon$$

for all $x \in \mathbb{R}$.

Proof. For given $x, y \in \mathbb{R}$, choose a $z \in \mathbb{R}$ such that $kx + ky + sz \ge d$, $kx + sy + sz \ge d$, $ky + sz \ge d$ and $sy + sz \ge d$. Then we have

$$(4.6) \qquad |g(x+y) - g(x) - g(y) + g(0)| \\ \leq |-f(x+y+z) + g(x+y) + h(z)| \\ + |f(x+y+z) - g(x) - h(y+z)| \\ + |f(y+z) - g(y) - h(z)| \\ + |-f(y+z) + g(0) + h(y+z)| \\ \leq 4\epsilon.$$

Now by Theorem 1.1, there exists a unique additive function $A_2 : \mathbb{R} \to \mathbb{C}$ such that

$$|g(x) - A_2(x) - g(0)| \le 4\epsilon$$

for all $x \in \mathbb{R}$. This completes the proof.

Lemma 4.3. Suppose that $k \neq 0$ and $f, g, h : \mathbb{R} \to \mathbb{C}$ satisfy

$$(4.7) |f(x+y) - g(x) - h(y)| \le \epsilon$$

for all $x, y \in \mathbb{R}$, with $kx + sy \ge d$. Then there exists a unique additive function $A_3 : \mathbb{R} \to \mathbb{C}$ such that

(4.8)
$$|h(x) - A_3(x) - h(0)| \le 4\epsilon$$

for all $x \in \mathbb{R}$.

Proof. For given $x, y \in \mathbb{R}$, choose a $z \in \mathbb{R}$ such that $sx + sy + kz \ge d$, $kx + sy + kz \ge d$, $sx + kz \ge d$ and $kx + kz \ge d$. Then we have

$$(4.9) |h(x + y) - h(x) - h(y) + h(0)| \\\leq |-f(x + y + z) + g(z) + h(x + y)| \\+ |f(x + y + z) - g(x + z) - h(y)| \\+ |f(z + x) - g(z) - h(x)| \\+ |-f(x + z) + g(x + z) + h(0)| \\\leq 4\epsilon.$$

Now by Theorem 1.1, there exists a unique additive function $A_3 : \mathbb{R} \to \mathbb{C}$ such that

$$|h(x) - A_3(x) - h(0)| \le 4\epsilon$$

for all $x \in \mathbb{R}$. This completes the proof.

Now we state and prove the main theorem of this section.

124 SANGYOUP KIM, GYUTAE KIM, GIHUI LEE, JAEHO LEE & GWANGHYUN PARK

Theorem 4.4. Suppose that $k, s \neq 0, k \neq s$ and $f, g, h : \mathbb{R} \to \mathbb{C}$ satisfy

$$(4.10) |f(x+y) - g(x) - h(y)| \le \epsilon$$

for all $x, y \in \mathbb{R}$, with $kx + sy \ge d$. Then there exists a unique additive function $A : \mathbb{R} \to \mathbb{C}$ such that

$$|f(x) - A(x) - f(0)| \le 4\epsilon,$$

$$|g(x) - A(x) - g(0)| \le 4\epsilon,$$

$$|h(x) - A(x) - h(0)| \le 4\epsilon,$$

for all $x \in \mathbb{R}$.

Proof. In view of Lemma 4.1, Lemma 4.2 and Lemma 4.3, it suffices to prove that $A_1 = A_2 = A_3$. For given $x, y \in \mathbb{R}$, choosing a $z \in \mathbb{R}$ such that $kx + sy + (s - k)z \ge d$, $(s - k)z \ge d$ and replacing x by x - z, y by y + z, and x by -z, y by -z in (4.10) we have

$$(4.11) \qquad \qquad |f(x+y) - g(x-z) - h(y+z)| \le \epsilon,$$

(4.12)
$$|-f(0) + g(-z) + h(z)| \le \epsilon.$$

The inequalities (4.6) and (4.9) imply

(4.13)
$$|g(x+y) - g(x) - g(y) + g(0)| \le 4\epsilon,$$

(4.14)
$$|h((x+y) - h(x) - h(y) + h(0)| \le 4\epsilon$$

for all $x, y \in \mathbb{R}$. Replacing y by -z in (4.13) we have

(4.15)
$$|g(x-z) - g(x) - g(-z) + g(0)| \le 4\epsilon$$

for all $x, y, z \in \mathbb{R}$. Replacing x by z in (4.14) we have

(4.16)
$$|h(y+z) - h(z) - h(y) + h(0)| \le 4\epsilon$$

for all $x, y, z \in \mathbb{R}$. From (4.11), (4.12), (4.15) and (4.16), using the triangle inequality we have

(4.17)
$$|f(x+y) - g(x) - h(y) - f(0) + g(0) + h(0)| \le 10\epsilon$$

for all $x, y \in \mathbb{R}$. Using the triangle inequality and (4.2), (4.5), (4.8) and (4.17) we have

$$(4.18) \qquad \begin{aligned} |A_1(x+y) - A_2(x) - A_3(y)| \\ &\leq |-f(x+y) + A_1(x+y) + f(0)| \\ &+ |g(x) - A_2(x) - g(0)| + |h(y) - A_3(y) - h(0)| \\ &+ |f(x+y) - g(x) - h(y) - f(0) + g(0) + h(0)| \\ &\leq 22\epsilon. \end{aligned}$$

Putting y = 0 and x = 0 in (4.18) separately, and using the fact that every nonzero additive function is unbounded as the same method of the proof in Theorem 2.4 we have $A_1 = A_2$ and $A_1 = A_3$. Letting $A := A_1 = A_2 = A_3$ we complete the proof. \Box

Now we consider asymptotic behaviors of the inequality (4.1).

Theorem 4.5. Let $k, s \in \mathbb{R}, k \neq s$. Suppose that $f, g, h : \mathbb{R} \to \mathbb{C}$ satisfy the asymptotic condition

(4.19)
$$|f(x+y) - g(x) - h(y)| \to 0$$

as $kx + sy \to \infty$. Then there exists a unique additive function $A : \mathbb{R} \to \mathbb{C}$ such that

(4.20)
$$f(x) = A(x) + f(0)$$

for all $x \in \mathbb{R}$.

Proof. By the condition (4.19), for each $n \in \mathbb{N}$, there exists $d_n \in \mathbb{R}$ such that

(4.21)
$$|f(x+y) - g(x) - h(y)| \le \frac{1}{n}$$

for all $x, y \in \mathbb{R}$, with $kx + sy \ge d_n$. By Theorem 2.1, there exists a unique additive function $A_n : \mathbb{R} \to \mathbb{C}$ such that

(4.22)
$$|f(x) - A_n(x) - f(0)| \le \frac{4}{n}$$

for all $x \in \mathbb{R}$. From (4.22), using the triangle inequality we have

(4.23)
$$|A_n(x) - A_m(x)| \le \frac{4}{n} + \frac{4}{m} \le 8$$

for all $x \in \mathbb{R}$. Thus it follows from (4.23) that $A_n = A_m$ for all $n, m \in \mathbb{N}$. Letting $n \to \infty$ in (4.22), we get the result.

Using Theorem 4.2 we obtain the results.

Theorem 4.6. Let $s \neq 0$. Suppose that $f, g, h : \mathbb{R} \to \mathbb{C}$ satisfy the asymptotic condition

(4.24)
$$|f(x+y) - g(x) - h(y)| \to 0$$

as $kx + sy \to \infty$. Then there exists a unique additive function $A : \mathbb{R} \to \mathbb{C}$ such that

(4.25)
$$g(x) = A(x) + g(0)$$

for all $x \in \mathbb{R}$.

Using Theorem 4.3 we obtain the following.

Theorem 4.7. Let $k \neq 0$. Suppose that $f, g, h : \mathbb{R} \to \mathbb{C}$ satisfy the asymptotic condition

(4.26)
$$|f(x+y) - g(x) - h(y)| \to 0$$

as $kx + sy \to \infty$. Then there exists a unique additive function $A : \mathbb{R} \to \mathbb{C}$ such that

(4.27)
$$h(x) = A(x) + h(0)$$

for all $x \in \mathbb{R}$.

Using Theorem 4.4 we obtain the following.

Theorem 4.8. Let $k \neq 0, s \neq 0$ and $k \neq s$. Suppose that $f, g, h : \mathbb{R} \to \mathbb{C}$ satisfy the asymptotic condition

(4.28)
$$|f(x+y) - g(x) - h(y)| \to 0$$

as $kx + sy \to \infty$. Then there exists a unique additive function $A : \mathbb{R} \to \mathbb{C}$ such that

$$f(x) = A(x) + f(0),$$

$$g(x) = A(x) + g(0),$$

$$h(x) = A(x) + h(0)$$

for all $x \in \mathbb{R}$.

Proof. By the condition (4.28), for each $n \in \mathbb{N}$, there exists $d_n \in \mathbb{R}$ such that

(4.29)
$$|f(x+y) - g(x) - h(y)| \le \frac{1}{n}$$

for all $x, y \in \mathbb{R}$, with $kx + sy \ge d_n$. By Theorem 4.4, there exists a unique additive function $\mathbb{R} \to \mathbb{C}$ such that

(4.30)
$$|f(x) - A_n(x) - f(0)| \le \frac{4}{n}$$

(4.31)
$$|g(x) - A_n(x) - g(0)| \le \frac{4}{n},$$

(4.32)
$$|h(x) - A_n(x) - h(0)| \le \frac{4}{n}$$

for all $x \in \mathbb{R}$. Similarly as in the proof of Theorem 4.5, we can show that $A_n = A_m$ for all $n, m \in \mathbb{N}$. Letting $n \to \infty$ in (4.30), (4.31) and (4.32) we get the result. \Box

Acknowledgment

This work was supported by the Research Program for Gifted Students through the Hong-Chun High School funded by Yongin City. The authors express their sincere gratitude to Si-Hyung Yoo(the principal of Hong-Chun High School) and their advisor Heung-Seon Hong.

References

- T. Aoki: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 2 (1950), 64-66.
- B. Batko: Stability of an alternative functional equation. J. Math. Anal. Appl. 339 (2008), 303-311.
- 3. _____: On approximation of approximate solutions of Dhombres' equation J. Math. Anal. Appl. **340** (2008), 424-432.
- D.G. Bourgin: Class of transformations and bordering transformations. Bull. Amer. Math. Soc. 57 (1951), 223-237.
- 5. _____: Multiplicative transformations Proc. Nat. Academy Sci. of U.S.A. **36** (1950), 564-570.
- J. Brzdęk: On stability of a family of functional equations. Acta Mathematica Hungarica 128 (2010), 139-149.
- 7. _____: On the quotient stability of a family of functional equations. *Nonlinear Analysis TMA* **71** (2009), 4396-4404.
- 8. _____: On a method of proving the Hyers-Ulam stability of functional equations on restricted domains. *The Austr. J. Math. Anal. Appl.* 6 (2009), 1-10.
- J. Brzdęk & J. Sikorska: A conditional exponential functional equation and its stability. Nonlinear Analysis TMA 72 (2010), 2929-2934.
- 10. S. Czerwik: *Stability of Functional Equations of Ulam-Hyers-Rassias Type*. Hadronic Press, Inc., Palm Harbor, Florida, Florida, 2003.
- 11. G.L. Forti: The stability of homomorphisms and amenablity with applications to functional equations. *Abh. Math. Sem. Univ. Hamburg* **57** (1987), 215-226.
- D.H. Hyers: On the stability of the linear functional equation. Proc. Nat. Acad. Sci. USA 27 (1941), 222-224.
- D.H. Hyers, G. Isac & Th.M. Rassias: Stability of functional equations in several variables. Birkhauser, 1998.
- S.M. Jung: Hyers-Ulam stability of Jensen's equation and its application. Proc. Amer. Math. Soc. 126 (1998), 3137-3143.
- K.-W. Jun & H.-M. Kim: Stability problem for Jensen-type functional equations of cubic mappings. Acta Mathematica Sinica, English Series 22 (2006), no. 6, 1781-1788.

- G.H. Kim & Y.H. Lee: Boundedness of approximate trigonometric functional equations. Appl. Math. Letters 31 (2009), 439-443.
- Z. Moszner: On the stability of functional equations. Aequationes Math. 77 (2009), 33-88.
- C.G. Park: Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras. Bull. Sci. Math. 132 (2008), 87-96.
- J.M. Rassias & M.J. Rassias: On the Ulam stability of Jensen and Jensen type mappings on restricted domains J. Math. Anal. Appl. 281 (2003), 516-524.
- J.M. Rassias: On the Ulam stability of mixed type mappings on restricted domains. J. Math. Anal. Appl. 276 (2002), 747-762.
- Th.M. Rassias: On the stability of linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), 297-300.
- J. Sikorska: Exponential functional equation on spheres. Appl. Math. Letters. 23 (2010), 156-160.
- 23. _____: On two conditional Pexider functinal equations and their stabilities. *Nonlinear Analysis TMA* **70** (2009), 2673-2684.
- 24. _____: On a Pexiderized conditional exponential functional equation. Acta Mathematica Hungarica **125** (2009), 287-299.
- F. Skof: Sull'approximazione delle applicazioni localmente δ-additive. Atii Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 117 (1983), 377-389.
- 26. S.M. Ulam: A collection of mathematical problems. Interscience Publ., New York, 1960.

^aMathematics Group, Hong-Chun High School, Yongin, Gyeonggi 449-150, Korea *Email address*: andrew1993@naver.com

^bMathematics Group, Hong-Chun High School, Yongin, Gyeonggi 449-150, Korea *Email address*: wogh0978@naver.com

^cMATHEMATICS GROUP, HONG-CHUN HIGH SCHOOL, YONGIN, GYEONGGI 449-150, KOREA *Email address*: annaviola@hanmail.net

^dMATHEMATICS GROUP, HONG-CHUN HIGH SCHOOL, YONGIN, GYEONGGI 449-150, KOREA Email address: bigstar9120paran.com

^eMathematics Group, Hong-Chun High School, Yongin, Gyeonggi 449-150, Korea *Email address*: kevin445@naver.com