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STABILITY OF FUNCTIONAL EQUATIONS

ASSOCIATED WITH INNER PRODUCT SPACES: A

FIXED POINT APPROACH

Choonkil Park∗, Jae Sung Huh, Won June Min, Dong Hoon
Nam, and Seung Hyeon Roh

Abstract. In [21], Th.M. Rassias proved that the norm defined
over a real vector space V is induced by an inner product if and only
if for a fixed integer n ≥ 2
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holds for all x1, · · · , xn ∈ V . We consider the functional equation
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Using fixed point methods, we prove the generalized Hyers-Ulam
stability of the functional equation
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= f(x) + f(y).(1)

1. Introduction and preliminaries

The stability problem of functional equations originated from a ques-
tion of Ulam [30] concerning the stability of group homomorphisms. Hy-
ers [9] gave a first affirmative partial answer to the question of Ulam for
Banach spaces. Hyers’ Theorem was generalized by Aoki [1] for additive

Received September 8, 2008. Revised September 17, 2008.
2000 Mathematics Subject Classification: Primary 39B72, 47H10.
Key words and phrases: quadratic mapping, fixed point, additive mapping,

functional equation associated with inner product space, generalized Hyers-Ulam
stability.

This work was supported by the R & E program of KOSEF in 2008.
∗Corresponding author.



414 Choonkil Park, J.S.Huh, W.J.Min, D.H.Nam, and S.H.Roh

mappings and by Th.M. Rassias [20] for linear mappings by considering
an unbounded Cauchy difference. The paper of Th.M. Rassias [20] has
provided a lot of influence in the development of what we call gener-
alized Hyers-Ulam stability or as Hyers-Ulam-Rassias stability of func-
tional equations. A generalization of the Th.M. Rassias theorem was
obtained by Găvruta [8] by replacing the unbounded Cauchy difference
by a general control function in the spirit of Th.M. Rassias’ approach.

A square norm on an inner product space satisfies the important
parallelogram equality

‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.

The functional equation

f(x + y) + f(x− y) = 2f(x) + 2f(y)

is called a quadratic functional equation. In particular, every solution
of the quadratic functional equation is said to be a quadratic mapping.
A generalized Hyers-Ulam stability problem for the quadratic functional
equation was proved by Skof [29] for mappings f : X → Y , where X is
a normed space and Y is a Banach space. Cholewa [5] noticed that the
theorem of Skof is still true if the relevant domain X is replaced by an
Abelian group. Czerwik [6] proved the generalized Hyers-Ulam stability
of the quadratic functional equation. The stability problems of several
functional equations have been extensively investigated by a number of
authors and there are many interesting results concerning this problem
(see [10], [13], [16]–[18], [22]–[28]).

We recall two fundamental results in fixed point theory.

Theorem 1.1. [2] Let (X, d) be a complete metric space and let
J : X → X be strictly contractive, i.e.,

d(Jx, Jy) ≤ Lf(x, y), ∀x, y ∈ X

for some Lipschitz constant L < 1. Then
(1) the mapping J has a unique fixed point x∗ = Jx∗;
(2) the fixed point x∗ is globally attractive, i.e.,

lim
n→∞

Jnx = x∗

for any starting point x ∈ X;
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(3) one has the following estimation inequalities:

d(Jnx, x∗) ≤ Lnd(x, x∗),

d(Jnx, x∗) ≤ 1

1− L
d(Jnx, Jn+1x),

d(x, x∗) ≤ 1

1− L
d(x, Jx)

for all nonnegative integers n and all x ∈ X.

Let X be a set. A function d : X ×X → [0,∞] is called a generalized
metric on X if d satisfies

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Theorem 1.2. [7] Let (X, d) be a complete generalized metric space
and let J : X → X be a strictly contractive mapping with Lipschitz
constant L < 1. Then for each given element x ∈ X, either

d(Jnx, Jn+1x) = ∞
for all nonnegative integers n or there exists a positive integer n0 such
that

(1) d(Jnx, Jn+1x) < ∞, ∀n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X |

d(Jn0x, y) < ∞};
(4) d(y, y∗) ≤ 1

1−L
d(y, Jy) for all y ∈ Y .

This paper is organized as follows: In Section 2, using fixed point
methods, we prove the generalized Hyers-Ulam stability of the functional
equation (1) in real Banach spaces: an even case.

In Section 3, using fixed point methods, we prove the generalized
Hyers-Ulam stability of the functional equation (1) in real Banach spaces:
an odd case.

Throughout this paper, let X be a real normed vector space with
norm || · ||, and Y a real Banach space with norm ‖ · ‖.

In 1996, G. Isac and Th.M. Rassias [11] were the first to provide ap-
plications of stability theory of functional equations for the proof of new
fixed point theorems with applications. By using fixed point methods,
the stability problems of several functional equations have been exten-
sively investigated by a number of authors (see [4], [12], [14], [15], [19]).
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2. Fixed points and generalized Hyers-Ulam stability of the
functional equation (1): an even case

One can easily show that an even mapping f : X → Y satisfies (1)
if and only if the even mapping f : X → Y is a Jensen type quadratic
mapping, i.e.,

2f

(
x + y

2

)
+ 2f

(
x− y

2

)
= f(x) + f(y),

and that an odd mapping f : X → Y satisfies (1) if and only if the odd
mapping mapping f : X → Y is a Jensen additive mapping, i.e.,

2f

(
x + y

2

)
= f(x) + f(y).

For a given mapping f : X → Y , we define

Cf(x, y) := 2f

(
x + y

2

)
+ f

(
x− y

2

)
+ f

(
y − x

2

)
− f(x)− f(y)

for all x, y ∈ X.
Using fixed point methods, we prove the generalized Hyers-Ulam sta-

bility of the functional equation Cf(x, y) = 0: an even case.

Theorem 2.1. Let f : X → Y be a mapping with f(0) = 0 for which
there exists a function ϕ : X2 → [0,∞) such that there exists an L < 1
such that ϕ(x, 0) ≤ 1

4
Lϕ(2x, 0) for all x ∈ X, and
∞∑

j=0

4jϕ
( x

2j
,

y

2j

)
< ∞,(2)

‖Cf(x, y)‖ ≤ ϕ(x, y)(3)

for all x, y ∈ X. Then there exists a unique Jensen type quadratic
mapping Q : X → Y satisfying

‖f(x) + f(−x)−Q(x)‖ ≤ 1

1− L
(ϕ(x, 0) + ϕ(−x, 0))(4)

for all x ∈ X.

Proof. Consider the set

S := {g : X → Y }
and introduce the generalized metric on S:

d(g, h) = inf{K ∈ R+ : ‖g(x)− h(x)‖ ≤ K(ϕ(x, 0) + ϕ(−x, 0)), ∀x ∈ X}.
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It is easy to show that (S, d) is complete. (See the proof of Theorem 2.5
of [3].)

Now we consider the linear mapping J : S → S such that

Jg(x) := 4g
(x

2

)

for all x ∈ X.
It follows from the proof of Theorem 3.1 of [2] that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
Letting y = 0 in (3), we get∥∥∥∥2f

(x

2

)
+ f

(x

2

)
+ f

(−x

2

)
− f(x)

∥∥∥∥ ≤ ϕ(x, 0)(5)

for all x ∈ X. Replacing x by −x in (5), we get∥∥∥∥2f
(
−x

2

)
+ f

(x

2

)
+ f

(−x

2

)
− f(−x)

∥∥∥∥ ≤ ϕ(−x, 0)(6)

for all x ∈ X. Let g(x) := f(x) + f(−x) for all x ∈ X. Then g : X → Y
is an even mapping. It follows from (5) and (6) that∥∥∥g(x)− 4g

(x

2

)∥∥∥ ≤ ϕ(x, 0) + ϕ(−x, 0)

for all x ∈ X. Hence d(g, Jg) ≤ 1.
By Theorem 1.2, there exists a mapping Q : X → Y satisfying the

following:
(1) Q is a fixed point of J , i.e.,

Q
(x

2

)
=

1

4
Q(x)(7)

for all x ∈ X. Then Q : X → Y is an even mapping. The mapping Q is
a unique fixed point of J in the set

M = {g ∈ S : d(f, g) < ∞}.
This implies that Q is a unique mapping satisfying (7) such that there
exists a K ∈ (0,∞) satisfying

‖g(x)−Q(x)‖ ≤ K(ϕ(x, 0) + ϕ(−x, 0))

for all x ∈ X;
(2) d(Jng,Q) → 0 as n →∞. This implies the equality
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lim
n→∞

4ng
( x

2n

)
= Q(x)(8)

for all x ∈ X;
(3) d(g,Q) ≤ 1

1−L
d(g, Jg), which implies the inequality

d(g, Q) ≤ 1

1− L
.

This implies that the inequality (4) holds.
It follows from (2), (3) and (8) that

‖CQ(x, y)‖ = lim
n→∞
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for all x, y ∈ X. So CQ(x, y) = 0 for all x, y ∈ X. Since Q : X → Y is
even, the mapping Q : X → Y is a Jensen type quadratic mapping.

Therefore, there exists a unique Jensen type quadratic mapping Q :
X → Y satisfying (4), as desired.

Corollary 2.2. Let p > 2 and θ ≥ 0 be real numbers, and let
f : X → Y be a mapping such that

‖Cf(x, y)‖ ≤ θ(||x||p + ||y||p)(9)

for all x, y ∈ X. Then there exists a unique Jensen type quadratic
mapping Q : X → Y satisfying

‖f(x) + f(−x)−Q(x)‖ ≤ 2p+1θ

2p − 4
||x||p

for all x ∈ X.

Proof. The proof follows from Theorem 2.1 by taking

ϕ(x, y) := θ(||x||p + ||y||p)
for all x, y ∈ X. Then we can choose L = 22−p and we get the desired
result.

Remark 2.3. Let f : X → Y be a mapping for which there exists a
function ϕ : X2 → [0,∞) satisfying (3) and f(0) = 0 such that

∞∑
j=0

1

4j
ϕ(2jx, 2jy) < ∞(10)
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for all x, y ∈ X. By a similar method to the proof of Theorem 2.1, one
can show that if there exists an L < 1 such that ϕ(x, 0) ≤ 4Lϕ(x

2
, 0) for

all x ∈ X, then there exists a unique Jensen type quadratic mapping
Q : X → Y satisfying

‖f(x) + f(−x)−Q(x)‖ ≤ L

1− L
(ϕ(x, 0) + ϕ(−x, 0))

for all x ∈ X.
For the case p < 2, one can obtain a similar result to Corollary 2.2:

Let p < 2 and θ ≥ 0 be real numbers, and let f : X → Y be a mapping
satisfying (9). Then there exists a unique Jensen type quadratic mapping
Q : X → Y satisfying

‖f(x) + f(−x)−Q(x)‖ ≤ 2p+1θ

4− 2p
||x||p

for all x ∈ X.

3. Fixed points and generalized Hyers-Ulam stability of the
functional equation (1): an odd case

Using fixed point methods, we prove the generalized Hyers-Ulam sta-
bility of the functional equation Cf(x, y) = 0: an odd case.

Theorem 3.1. Let f : X → Y be a mapping with f(0) = 0 for which
there exists a function ϕ : X2 → [0,∞) such that there exists an L < 1
such that ϕ(x, 0) ≤ 1

2
Lϕ(2x, 0) for all x ∈ X, and

∞∑
j=0

2jϕ
( x

2j
,

y

2j

)
< ∞,(11)

‖Cf(x, y)‖ ≤ ϕ(x, y)(12)

for all x, y ∈ X. Then there exists a unique Jensen additive mapping
A : X → Y satisfying

‖f(x)− f(−x)− A(x)‖ ≤ 1

1− L
(ϕ(x, 0) + ϕ(−x, 0))(13)

for all x ∈ X.

Proof. Consider the set

S := {g : X → Y }
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and introduce the generalized metric on S:

d(g, h) = inf{K ∈ R+ : ‖g(x)− h(x)‖ ≤ K(ϕ(x, 0) + ϕ(−x, 0)), ∀x ∈ X}.
It is easy to show that (S, d) is complete. (See the proof of Theorem 2.5
of [3].)

Now we consider the linear mapping J : S → S such that

Jg(x) := 2g
(x

2

)

for all x ∈ X.
It follows from the proof of Theorem 3.1 of [2] that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
Letting y = 0 in (12), we get∥∥∥∥2f

(x

2

)
+ f

(x

2

)
+ f

(−x

2

)
− f(x)

∥∥∥∥ ≤ ϕ(x, 0)(14)

for all x ∈ X. Replacing x by −x in (14), we get∥∥∥∥2f
(
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2

)
+ f
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2

)
+ f
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2

)
− f(−x)

∥∥∥∥ ≤ ϕ(−x, 0)(15)

for all x ∈ X. Let g(x) := f(x)− f(−x) for all x ∈ X. Then g : X → Y
is an odd mapping. It follows from (14) and (15) that∥∥∥g(x)− 2g

(x

2

)∥∥∥ ≤ ϕ(x, 0) + ϕ(−x, 0)

for all x ∈ X. Hence d(g, Jg) ≤ 1.
By Theorem 1.2, there exists a mapping A : X → Y satisfying the

following:
(1) A is a fixed point of J , i.e.,

A
(x

2

)
=

1

2
A(x)(16)

for all x ∈ X. Then A : X → Y is an odd mapping. The mapping A is
a unique fixed point of J in the set

M = {g ∈ S : d(f, g) < ∞}.
This implies that A is a unique mapping satisfying (16) such that there
exists a K ∈ (0,∞) satisfying

‖g(x)− A(x)‖ ≤ K(ϕ(x, 0) + ϕ(−x, 0))
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for all x ∈ X;
(2) d(Jng, A) → 0 as n →∞. This implies the equality

lim
n→∞

2ng
( x

2n

)
= A(x)(17)

for all x ∈ X;
(3) d(g, A) ≤ 1

1−L
d(g, Jg), which implies the inequality

d(g, A) ≤ 1

1− L
.

This implies that the inequality (13) holds.
It follows from (11), (12) and (17) that

‖CA(x, y)‖ = lim
n→∞

2n
∥∥∥Cg

( x

2n
,

y

2n

)∥∥∥

≤ lim
n→∞

2n
(
ϕ

( x

2n
,

y

2n

)
+ ϕ

(
− x

2n
,− y

2n

))
= 0

for all x, y ∈ X. So CA(x, y) = 0 for all x, y ∈ X. Since A : X → Y is
odd, the mapping A : X → Y is a Jensen additive mapping.

Therefore, there exists a unique Jensen additive mapping A : X → Y
satisfying (13), as desired.

Corollary 3.2. Let p > 1 and θ ≥ 0 be real numbers, and let
f : X → Y be a mapping satisfying (9). Then there exists a unique
Jensen additive mapping A : X → Y satisfying

‖f(x)− f(−x)− A(x)‖ ≤ 2p+1θ

2p − 2
||x||p

for all x ∈ X.

Proof. The proof follows from Theorem 3.1 by taking

ϕ(x, y) := θ(||x||p + ||y||p)
for all x, y ∈ X. Then we can choose L = 21−p and we get the desired
result.

Combining Corollaries 2.2 and 3.2 yields the following.

Theorem 3.3. Let p > 2 and θ ≥ 0 be real numbers, and let f : X →
Y be a mapping satisfying (9). Then there exist a unique Jensen type
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quadratic mapping Q : X → Y and a unique Jensen additive mapping
A : X → Y satisfying

‖2f(x)−Q(x)− A(x)‖ ≤
(

2p+1

2p − 4
+

2p+1

2p − 2

)
θ||x||p

for all x ∈ X.

Remark 3.4. Let f : X → Y be a mapping for which there exists a
function ϕ : X2 → [0,∞) satisfying (12) and f(0) = 0 such that

∞∑
j=0

1

2j
ϕ(2jx, 2jy) < ∞

for all x, y ∈ X. By a similar method to the proof of Theorem 3.1, one
can show that if there exists an L < 1 such that ϕ(x, 0) ≤ 2Lϕ(x

2
, 0) for

all x ∈ X, then there exists a unique Jensen additive mapping A : X →
Y satisfying

‖f(x)− f(−x)− A(x)‖ ≤ L

1− L
(ϕ(x, 0) + ϕ(−x, 0))

for all x ∈ X.
For the case p < 1, one can obtain a similar result to Corollary 3.2:

Let p < 1 and θ ≥ 0 be real numbers, and let f : X → Y be a mapping
satisfying (9). Then there exists a unique Jensen additive mapping A :
X → Y satisfying

‖f(x)− f(−x)− A(x)‖ ≤ 2p+1θ

2− 2p
||x||p

for all x ∈ X.

Combining Remarks 2.3 and 3.4 yields the following.

Theorem 3.5. Let p < 1 and θ ≥ 0 be real numbers, and let f : X →
Y be a mapping satisfying (9). Then there exist a unique Jensen type
quadratic mapping Q : X → Y and a unique Jensen additive mapping
A : X → Y satisfying

‖2f(x)−Q(x)− A(x)‖ ≤
(

2p+1

4− 2p
+

2p+1

2− 2p

)
θ||x||p

for all x ∈ X.
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[3] L. Cădariu and V. Radu, On the stability of the Cauchy functional equation:
a fixed point approach, Grazer Math. Ber. 346 (2004), 43–52.
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