• 제목/요약/키워드: Hydroxyapatite discs

검색결과 12건 처리시간 0.02초

NaCl 수용액에 담근 Hydroxyapatite 코팅된 타이타늄 시편의 표면 변화 (The Surface Characteristic Changes of Hydroxyapatite Coated Ti Disc When Immersed in NaCl Solution)

  • 백연화;김명주;권호범;임영준
    • 구강회복응용과학지
    • /
    • 제28권4호
    • /
    • pp.339-347
    • /
    • 2012
  • Hydroxyapatite 코팅 임플란트의 세포반응성을 증가시키기 위한 다양한 연구들이 진행되어 왔다. 본 연구에서는 Hydroxyapatite 코팅된 타이타늄 시편을 NaCl 수용액에 다양한 기간 동안 담그어 놓았을 때 발생하는 표면거칠기, 표면접촉각, 표면에너지 등의 표면 특성의 변화를 관찰하였다. Hydroxyapatite 코팅 타이타늄 시편을 0.9% NaCl 용액에 담근 후 각각 7일, 14일, 21일간 $37^{\circ}C$를 유지하였다. 담그지 않은 동일한 시편을 대조군으로 하였다.(n=3) 모든 시편을 공기 중에서 완전 건조 후 공초점레이저주사현미경(CLSM)를 이용하여 표면거칠기를 측정하였다. 증류수를 시편 표면에 떨어뜨린 후 표면접촉각을 video contact angle analyzer를 이용하여 측정하였고 세 가지 용액을 떨어뜨려 접촉각을 측정하여 표면에너지를 산출하였다. 표면을 관찰하기 위해 Field Emission-Scanning Electron Microscope 촬영을 시행하였다. 본 연구 결과 Hydroxyapatite 시편을 Nacl 수용액에 담그는 간단한 방법을 통해 표면거칠기 및 친수성이 증가하는 것을 관찰할 수 있으며, 이러한 표면특성의 개선을 통하여 세포반응성이 증가하는 것을 기대할 수 있다.

Hydrogen Peroxide 농도와 적용시간이 Hydroxyapatite Discs의 미백과 물리적 성질에 미치는 영향 (EFFECT OF HYDROGEN PEROXIDE CONCENTRATION ON THE WHITENING AND PHYSICAL PROPERTIES OF HYDROXYAPATITE DISCS)

  • 양연미;이두철;백병주;김재곤;신정근
    • 대한소아치과학회지
    • /
    • 제34권1호
    • /
    • pp.1-12
    • /
    • 2007
  • 법랑질의 주성분인 hydroxyapatite 분말을 성형하고 소결하여 착색을 유발한 다음 과산화수소의 농도와 적용 기간의 변화에 따라 나타나는 미세 조직과 기계적 성질의 변화 및 미백 효과 등에 관한 연구를 통해 다음과 같은 결론을 얻었다. 1. 과산화수소의 농도와 적용시간이 증가함에 따라 미백 효과가 증가되었다. 2. 표면조도는 15% 과산화수소 10일, 30% 과산화수소 7, 10일 적용 시 유의한 차이로 증가하였다(p<0.05). 3. X-선회절 분석결과 미백처리 전 후의 결정상의 변화는 관찰되지 않았으나, 주사전자현미경 관찰시 표면의 미세구조는 과산화수소 농도와 적용시간의 증가에 따라 미세기공이 증가하였다. 4. 2축 굽힘강도는 30%농도의 과산화수소로 7, 10일 적용하였을 때 유의한 차이로 감소되었다(p<0.05). 5. 미소 경도값은 15% 과산화수소 10일과 30% 과산화수소 3, 7, 10일 적용 후 유의한 차이로 감소되었다(p<0.05).

  • PDF

Cell attachment and proliferation of bone marrow-derived osteoblast on zirconia of various surface treatment

  • Pae, Ahran;Lee, Heesu;Noh, Kwantae;Woo, Yi-Hyung
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권2호
    • /
    • pp.96-102
    • /
    • 2014
  • PURPOSE. This study was performed to characterize the effects of zirconia coated with calcium phosphate and hydroxyapatite compared to smooth zirconia after bone marrow-derived osteoblast culture. MATERIALS AND METHODS. Bone marrow-derived osteoblasts were cultured on (1) smooth zirconia, (2) zirconia coated with calcium phosphate (CaP), and (3) zirconia coated with hydroxyapatite (HA). The tetrazolium-based colorimetric assay (MTT test) was used for cell proliferation evaluation. Scanning electron microscopy (SEM) and alkaline phosphatase (ALP) activity was measured to evaluate the cellular morphology and differentiation rate. X-ray photoelectron spectroscopy (XPS) was employed for the analysis of surface chemistry. The genetic expression of the osteoblasts and dissolution behavior of the coatings were observed. Assessment of the significance level of the differences between the groups was done with analysis of variance (ANOVA). RESULTS. From the MTT assay, no significant difference between smooth and surface coated zirconia was found (P>.05). From the SEM image, cells on all three groups of discs were sporadically triangular or spread out in shape with formation of filopodia. From the ALP activity assay, the optical density of osteoblasts on smooth zirconia discs was higher than that on surface treated zirconia discs (P>.05). Most of the genes related to cell adhesion showed similar expression level between smooth and surface treated zirconia. The dissolution rate was higher with CaP than HA coating. CONCLUSION. The attachment and growth behavior of bone-marrow-derived osteoblasts cultured on smooth surface coated zirconia showed comparable results. However, the HA coating showed more time-dependent stability compared to the CaP coating.

감마선, 전자선에 의한 멸균 비교분석 (Comparative Study of Sterilization by Gamma-ray and Electron-Beam)

  • 정경환;박창희
    • 한국방사선학회논문지
    • /
    • 제14권5호
    • /
    • pp.537-543
    • /
    • 2020
  • 현대사회의 노인 인구는 첨단 의료기술과 최소 침습 수술로 인해 빠르게 성장하고 있다. 따라서 의료기기를 사용하는 경향이 증가하기 때문에 병원성 감염이 우려된다. 따라서 현대 의학의 최우선 목표는 감염예방이다. 최근 3D 프린팅을 이용하여 환자 맞춤형 임플란트 이식술이 늘고 있다. 대표적 재료로 이용되는 것이 수산화인회석이다. 현재 HA 디스크 멸균을 위한 흡수선량 기준이 없으므로, HA 디스크 표면에 오염된 대장균과 충치균을 감마선 코발트와 선형 가속기를 이용하여 각 흡수선량 0, 0.5, 1.0, 3.0, 5.0 kGy로 조사 후, 십진 희석법으로 검체에서 균 수를 측정하였다. 멸균 후 대장균, 충치균의 생존 비교분석을 위해 비모수 검정법을 시행하였으며, 그 결과 대장균은 1 kGy 이상, 충치균은 3 kGy 이상에서 멸균되었다. 방사선 멸균 흡수선량 권고사항보다 낮은 수치에서 멸균을 시행하는 것도 가능할 것으로 생각된다.

Effect of implant surface microtopography by hydroxyapatite grit-blasting on adhesion, proliferation, and differentiation of osteoblast-like cell line, MG-63

  • Park, Sung-Jae;Bae, Sang-Bum;Kim, Su-Kyoung;Eom, Tae-Gwan;Song, Seung-Il
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제37권3호
    • /
    • pp.214-224
    • /
    • 2011
  • Objective: This study examined the potential of the in vitro osteogenesis of microtopographically modified surfaces, RBM (resorbable blasting media) surfaces, which generate hydroxyapatite grit-blasting. Methods: RBM surfaces were modified hydroxyapatite grit-blasting to produce microtopographically modified surfaces and the surface morphology, roughness or elements were examined. To investigate the potential of the in vitro osteogenesis, the osteoblastic cell adhesion, proliferation, and differentiation were examined using the human osteoblast-like cell line, MG-63 cells. Osteoblastic cell proliferation was examined as a function of time. In addition, osteoblastic cell differentiation was verified using four different methods of an ALP activity assay, a mineralization assay using alizarin red-s staining, and gene expression of osteoblastic differentiation marker using RT-PCR or ELISA. Results: Osteoblastic cell adhesion, proliferation and ALP activity was elevated on the RBM surfaces compared to the machined group. The cells exhibited a high level of gene expression of the osteoblastic differentiation makers (osteonectin, type I collagen, Runx-2, osterix). imilar data was represented in the ELISA produced similar results in that the RBM surface increased the level of osteocalcin, osteopontin, TGF-beta1 and PGE2 secretion, which was known to stimulate the osteogenesis. Moreover, alizarin red-s staining revealed significantly more mineralized nodules on the RBM surfaces than the machined discs. Conclusion: RBM surfaces modified with hydroxyapatite grit-blasting stimulate the in vitro osteogenesis of MG-63 cells and may accelerate bone formation and increase bone-implant contact.

Surface characteristics of a novel hydroxyapatite-coated dental implant

  • Jung, Ui-Won;Hwang, Ji-Wan;Choi, Da-Yae;Hu, Kyung-Seok;Kwon, Mi-Kyung;Choi, Seong-Ho;Kim, Hee-Jin
    • Journal of Periodontal and Implant Science
    • /
    • 제42권2호
    • /
    • pp.59-63
    • /
    • 2012
  • Purpose: This study evaluated the surface characteristics and bond strength produced using a novel technique for coating hydroxyapatite (HA) onto titanium implants. Methods: HA was coated on the titanium implant surface using a super-high-speed (SHS) blasting method with highly purified HA. The coating was performed at a low temperature, unlike conventional HA coating methods. Coating thickness was measured. The novel HA-coated disc was fabricated. X-ray diffraction analysis was performed directly on the disc to evaluate crystallinity. Four novel HA-coated discs and four resorbable blast medium (RBM) discs were prepared. Their surface roughnesses and areas were measured. Five puretitanium, RBM-treated, and novel HA-coated discs were prepared. Contact angle was measured. Two-way analysis of variance and the post-hoc Scheffe's test were used to analyze differences between the groups, with those with a probability of P<0.05 considered to be statistically significant. To evaluate exfoliation of the coating layer, 7 sites on the mandibles from 7 mongrel dogs were used. Other sites were used for another research project. In total, seven novel HA-coated implants were placed 2 months after extraction of premolars according to the manufacturer's instructions. The dogs were sacrificed 8 weeks after implant surgery. Implants were removed using a ratchet driver. The surface of the retrieved implants was evaluated microscopically. Results: A uniform HA coating layer was formed on the titanium implants with no deformation of the RBM titanium surface microtexture when an SHS blasting method was used. Conclusions: These HA-coated implants exhibited increased roughness, crystallinity, and wettability when compared with RBM implants.

SURFACE CHARACTERISTICS AND BIOLOGICAL RESPONSES OF HYDROXYAPATITE COATING ON TITANIUM BY HYDROTHERMAL METHOD: AN IN VITRO STUDY

  • Kim, Dong-Seok;Kim, Chang-Whe;Jang, Kyung-Soo;Lim, Young-Jun
    • 대한치과보철학회지
    • /
    • 제43권3호
    • /
    • pp.363-378
    • /
    • 2005
  • Statement of problem. Hydroxyapatite(HA) coated titanium surfaces have not yet showed the reliable osseointegration in various conditions. Purpose. This study was aimed to investigate microstructures, chemical composition, and surface roughness of the surface coated by the hydrothermal method and to evaluate the effect of hydrothermal coating on the cell attachment, as well as cell proliferation. Material and Methods. Commercially pure(c.p.) titanium discs were used as substrates. The HA coating on c.p. titanium discs by hydrothermal method was performed in 0.12M HCl solution mixed with HA(group I) and 0.1M NaOH solution mixed with HA(group II). GroupⅠ was heated at 180 $^{\circ}C$ for 24, 48, and 72 hours. GroupⅡ was heated at 180 $^{\circ}C$ for 12, 24, and 36 hours. And the treated surfaces were evaluated by Scanning electron microscopy(SEM), Energy dispersive X-ray spectroscopy(EDS), X-ray photoelectron spectroscopy(XPS), X-ray diffraction method(XRD), Confocal laser scanning microscopy(CLSM). And SEM of fibroblast and 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MTT) assay were used for cellular responses of the treated surfaces. Results. The color of surface changed in both groups after the hydrothermal process. SEM images showed that coating pattern was homogeneous in group II, while inhomogeneous in group I. H72 had rosette-like precipitates. The crystalline structure grew gradually in group II, according to extending treatment period. The long needle-like crystals were prominent in N36. Calcium(Ca) and phosphorus(P) were not detected in H24 and H48 in EDS. In all specimens of group II and H72, Ca was found. Ca and P were identified in all treated groups through the analysis of XPS, but they were amorphous. Surface roughness did not increase in both groups after hydrothermal treatment. The values of surface roughness were not significantly different between groups I and II. According to the SEM images of fibroblasts, cell attachments were oriented and spread well in both treated groups, while they were not in the control group. However, no substantial amount of difference was found between groups I and II. Conclusions. In this study during the hydrothermal process procedure, coating characteristics, including the HA precipitates, crystal growth, and crystalline phases, were more satisfactory in NaOH treated group than in HCl treated group. Still, the biological responses of the modified surface by this method were not fully understood for the two tested groups did not differ significantly. Therefore, more continuous research on the relationship between the surface features and cellular responses seems to be in need.

Effect of Bacteriocin-Like Inhibitory Substance (BLIS) from Enterococcus faecium DB1 on Cariogenic Streptococcus mutans Biofilm Formation

  • Kim, Ni-Na;Kim, Bong Sun;Lee, Han Bin;An, Sunghyun;Kim, Donghan;Kang, Seok-Seong
    • 한국축산식품학회지
    • /
    • 제42권6호
    • /
    • pp.1020-1030
    • /
    • 2022
  • The aim of the study was to investigate the effect of bacteriocin-like inhibitory substance (BLIS) from Enterococcus faecium DB1 on cariogenic Streptococcus mutans biofilm. Crystal violet staining, fluorescence, and scanning electron microscopy analyses demonstrated that the BLIS from Enterococcus faecium DB1 (DB1 BLIS) inhibited S. mutans biofilm. When DB1 BLIS was co-incubated with S. mutans, biofilm formation by S. mutans was significantly reduced (p<0.05). DB1 BLIS also destroyed the preformed biofilm of S. mutans. In addition, DB1 BLIS decreased the viability of S. mutans biofilm cells during the development of biofilm formation and in the preformed biofilm. DB1 BLIS significantly decreased the growth of S. mutans planktonic cells. Furthermore, S. mutans biofilm on the surface of saliva-coated hydroxyapatite discs was reduced by DB1 BLIS. Taken together, DB1 BLIS might be useful as a preventive and therapeutic agent against dental caries caused by S. mutans.

양극산화와 열수처리한 Ti-6Al-7Nb 합금의 표면 특성 (Surface Characteristics of Anodized and Hydrothermally-Treated Ti-6Al-7Nb Alloy)

  • 김문영;송광엽;배태성
    • 구강회복응용과학지
    • /
    • 제21권1호
    • /
    • pp.33-42
    • /
    • 2005
  • This study was performed to investigate the surface properties and in vitro biocompatibility of electrochemically oxidized Ti-6Al-7Nb alloy by anodic spark discharge technique. Discs of Ti-6Al-7Nb alloy of 20 mm in diameter and 2 mm in thickness were polished sequentially from #300 to 1000 SiC paper, ultrasonically washed with acetone and distilled water for 5 min, and dried in an oven at $50^{\circ}C$ for 24 hours. Anodizing was performed using a regulated DC power supply. The applied voltages were given at 240, 280, 320, and 360 V and current density of $30mA/cm^2$. Hydrothermal treatment was conducted by high pressure steam at $300^{\circ}C$ for 2 hours using a autoclave. Samples were soaked in the Hanks' solution with pH 7.4 at $36.5^{\circ}C$ during 30 days. The results obtained were summarized as follows; 1. The oxide films were porous with pore size of $1{\sim}5{\mu}m$. The size of micropores increased with increasing the spark forming voltage. 2. The main crystal structure of the anodic oxide film was anatase type as analyzed with thin-film X-ray diffractometery. 3. Needle-like hydroxyapatite (HA) crystals were observed on anodic oxide films after hydrothermal treatment at $300^{\circ}C$ for 2 hours. The precipitation of HA crystals was accelerated with increasing the spark forming voltage. 4. The precipitation of the fine asperity-like HA crystals were observed after being immersed in Hanks' solution at $37^{\circ}C$. The precipitation of HA crystals was accelerated with increasing the spark forming voltage and the time of immersion in Hanks' solution. 5. The Ca/P ratio of the precipitated HA layer was equivalent to that of HA crystal as increasing the spark forming voltage and the time of immersion in Hanks' solution.

인공 우식 유발성 biofilm 구성성분의 시간 흐름에 따른 변화 (Changes in the composition of artificial cariogenic biofilms over time)

  • 오철;판딧 싼토스;전재규
    • Journal of Korean Academy of Oral Health
    • /
    • 제43권3호
    • /
    • pp.118-123
    • /
    • 2019
  • Objectives: The purpose of this study was to investigate changes in the composition of artificial cariogenic biofilms using a Streptococcus mutans biofilm model over a period of time. Methods: We analyzed the dry weight, colony forming unit (CFU) number, extracellular polysaccharide (EPS) biovolume, and acid production rate of S. mutans biofilms formed on saliva-coated hydroxyapatite discs after 26 h, 50 h, 74 h, 98 h, 171 h, and 195 h. In addition, we performed a laser scanning confocal fluorescence microscopy to determine the bacterial volume, EPS biovolume, and biofilm thickness. We calculated the biofilm density using dry weight and EPS biovolume. Results: Over a period of time, there was no change in the CFU number and acid production rate of S. mutans biofilms, but there was an increase in the dry weight and EPS biovolume of S. mutans biofilms. The bacterial volume, EPS biovolume, and biofilm thickness only increased in the 50-h-old biofilm; however, no change was observed in 50-195-h-old biofilms. In addition, an increase in the biofilm density was observed over time. Conclusions: These results suggest that the acid production ability of cariogenic biofilms does not change, but the biofilm density increases over time. However, due to scientific information, further research needs to be conducted in the field of dentistry to get further insights on the progression of cariogenic biofilms over time.