The Surface Characteristic Changes of Hydroxyapatite Coated Ti Disc When Immersed in NaCl Solution

NaCl 수용액에 담근 Hydroxyapatite 코팅된 타이타늄 시편의 표면 변화

  • Baek, Yeon-Wha (Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Kim, Myung-Joo (Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Kwon, Ho-Beom (Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Lim, Young-Jun (Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University)
  • 백연화 (서울대학교 치의학대학원 치과보철학 교실) ;
  • 김명주 (서울대학교 치의학대학원 치과보철학 교실) ;
  • 권호범 (서울대학교 치의학대학원 치과보철학 교실) ;
  • 임영준 (서울대학교 치의학대학원 치과보철학 교실)
  • Received : 2012.10.05
  • Accepted : 2012.12.25
  • Published : 2012.12.30

Abstract

In previous studies, methods for enhancing cellular response on the Hydroxyapatite coated implant surface were described. In this study, the changes of surface characteristics such as surface roughness, contact angle, surface energy and surface morphology were observed when Hydroxyapatite coated Ti discs were immersed in NaCl solution for various time. Hydroxyapatite coated Ti discs were immersed in 0.9% NaCl solution for 7, 14 and 21 days at $37^{\circ}C$. The control group comprises dry identical discs not immersed in a solution. (n=3) All discs were dried in air completely and the surface roughness was measured using confocal laser scanning microscopy(CLSM). Static contact angle was recorded by video contact angle analyzer after dropping distilled water on the surface. The surface energy was calculated from contact angles of the three liquids. Surface was observed using a field emission-scanning electron microscope(FE-SEM). As a result, the surface roughness of immersed Hydroxyapatite coated Ti discs increased significantly and the contact angle decreased comparing with control group discs. The surface energy of immersed discs increased except for discs immersed for 14 days.

Hydroxyapatite 코팅 임플란트의 세포반응성을 증가시키기 위한 다양한 연구들이 진행되어 왔다. 본 연구에서는 Hydroxyapatite 코팅된 타이타늄 시편을 NaCl 수용액에 다양한 기간 동안 담그어 놓았을 때 발생하는 표면거칠기, 표면접촉각, 표면에너지 등의 표면 특성의 변화를 관찰하였다. Hydroxyapatite 코팅 타이타늄 시편을 0.9% NaCl 용액에 담근 후 각각 7일, 14일, 21일간 $37^{\circ}C$를 유지하였다. 담그지 않은 동일한 시편을 대조군으로 하였다.(n=3) 모든 시편을 공기 중에서 완전 건조 후 공초점레이저주사현미경(CLSM)를 이용하여 표면거칠기를 측정하였다. 증류수를 시편 표면에 떨어뜨린 후 표면접촉각을 video contact angle analyzer를 이용하여 측정하였고 세 가지 용액을 떨어뜨려 접촉각을 측정하여 표면에너지를 산출하였다. 표면을 관찰하기 위해 Field Emission-Scanning Electron Microscope 촬영을 시행하였다. 본 연구 결과 Hydroxyapatite 시편을 Nacl 수용액에 담그는 간단한 방법을 통해 표면거칠기 및 친수성이 증가하는 것을 관찰할 수 있으며, 이러한 표면특성의 개선을 통하여 세포반응성이 증가하는 것을 기대할 수 있다.

Keywords

References

  1. Goldberg VM, Jinno T. The bone-implant interface: a dynamic surface. Journal of long-term effects of medical implants 1999;9:11.
  2. Gu YX, Du J, Si MS, Mo JJ, Qiao SC, Lai HC. The roles of PI3K/Akt signaling pathway in regulating MC3T3-E1 preosteoblast proliferation and differentiation on SLA and SLActive titanium surfaces. Journal of Biomedical Materials Research Part A 2012.
  3. Jansen J, Waerden J, Wolke J. A histological evaluation of the effect of hydroxyapatite coating on interfacial response. Journal of Materials Science: Materials in Medicine 1993;4:466-70.
  4. Lugscheider E, Knepper M, Heimberg B, Dekker A, Kirkpatrick C. Cytotoxicity investigations of plasma sprayed calcium phosphate coatings. Journal of Materials Science: Materials in Medicine 1994;5: 371-5.
  5. Gottlander M, Albrektsson T. Histomorphometric studies of hydroxylapatite-coated and uncoated CP titanium threaded implants in bone. The International journal of oral & maxillofacial implants 1991;6:399.
  6. Anselme K, Sharrock P, Hardouin P, Dard M. In vitro growth of human adult bone-derived cells on hydroxyapatite plasma-sprayed coatings. J Biomed Mater Res 1997;34:247-59.
  7. Bertazzo S, Zambuzzi WF, Campos DDP, Ogeda TL, Ferreira CV, Bertran CA. Hydroxyapatite surface solubility and effect on cell adhesion. Colloids and Surfaces B: Biointerfaces 2010;78:177-84.
  8. Bertazzo S, Zambuzzi WF, Campos DDP, Ferreira CV, Bertran CA. A simple method for enhancing cell adhesion to hydroxyapatite surface. Clin Oral Implants Res 2010;21:1411-3.
  9. Buser D, Schenk R, Steinemann S, Fiorellini J, Fox C, Stich H. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res 1991;25:889-902.
  10. Li D, Ferguson SJ, Beutler T, Cochran DL, Sittig C, Hirt HP, Buser D. Biomechanical comparison of the sandblasted and acid-etched and the machined and acid-etched titanium surface for dental implants. J Biomed Mater Res 2002;60:325-32.
  11. Wennerberg A, Ektessabi A, Albrektsson T, Johansson C, Andersson B. A 1-year follow-up of implants of differing surface roughness placed in rabbit bone. The International journal of oral & maxillofacial implants 1997;12:486.
  12. Kilpadi DV, Lemons JE. Surface energy characterization of unalloyed titanium implants. J Biomed Mater Res 1994;28:1419-25.
  13. Eriksson C, Nygren H, Ohlson K. Implantation of hydrophilic and hydrophobic titanium discs in rat tibia: cellular reactions on the surfaces during the first 3 weeks in bone. Biomaterials 2004;25:4759-66.
  14. Frayssinet P, Tourenne F, Rouquet N, Conte P, Delga C, Bonel G. Comparative biological properties of HA plasma-sprayed coatings having different crystallinities. Journal of Materials Science: Materials in Medicine 1994;5:11-7.