• 제목/요약/키워드: Hydrophobic ionic liquid

검색결과 18건 처리시간 0.032초

Extraction behaviors of platinum group metals in simulated high-level liquid waste by a hydrophobic ionic liquid bearing an amino moiety

  • Wu, Hao;Kim, Seong-Yun;Takahashi, Tadayuki;Oosugi, Haruka;Ito, Tatsuya;Kanie, Kiyoshi
    • Nuclear Engineering and Technology
    • /
    • 제53권4호
    • /
    • pp.1218-1223
    • /
    • 2021
  • A hydrophobic ionic liquid including an amino moiety ([DiOcAPmim][NTf2]) was synthesized. Its extraction behaviors towards Pd(II), Ru(III), Rh(III) were investigated in nitric acid aqueous solution as a function of contact time, effect of concentration of nitric acid, effect of temperature, and effect of co-existing metal ions. The extraction kinetics of Pd(II) was fairly fast and extraction equilibrium can be attained within only 5 min under the [HNO3] = 2.05 M. When [HNO3]< 1 M, the extraction percentage of Pd(II), Ru(III), Rh(III) were all above 80%. When [HNO3] reached 2 M, all of the extraction percentage decreased and in an order of Pd(II)>Ru(III)>Rh(III). When [HNO3]> 2 M, the extraction performance gradually recovered. The effect of temperature can slightly affect the extraction performance of Pd(II). Furthermore, in simulated high-level liquid waste, [DiOcAPmim][NTf2] showed a better preference towards Pd(II) under the interference of various other co-existing metal ions.

이온성 액체를 이용한 생물분자의 추출 (Extraction of Biomolcules by Ionic Liquids)

  • 이우윤;이용화;이준;홍연기
    • 융복합기술연구소 논문집
    • /
    • 제4권2호
    • /
    • pp.23-26
    • /
    • 2014
  • As an effective separation method for biomolecules, aqueous two-phase systems based on ionic liquids were suggested. Hydrophobic ionic liquids are more expensive and viscous in spite of their usage in the ionic liquid/water biphasic extraction compared with hydrophilic ionic liquids. In case of aqueous two-phase systems using hydrophilic ionic liquids, they can be diluted in aqueous phase. Experimental results show that aqueous two phase systems can be formed by adding appropriate amount of ionic liquids to aqueous salts solutions. The viscosity of ionic liquid aqueous phase is proportional to the cation chain length in ionic liquids. It is founded that the ionic liquid based aqueous two phase systems are effective for the separation of biomolecules such as acrylic acid.

Ionic Liquid/Styrene-Acrylonitrile Copolymer Nanofibers as Chemiresistor for Alcohol Vapours

  • Kim, Min-Jae;Kang, Eun-Soo;Park, Dong-Wha;Shim, Bong-Sup;Shim, Sang-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권9호
    • /
    • pp.2867-2872
    • /
    • 2012
  • SAN/$BMIPF_6$ nanofibers were fabricated by an electrospinning process and used as chemiresistors for sensing alcohol vapours. A hydrophobic and air-stable ionic liquid, $BMIPF_6$, was used to impart electrical conductivity to insulating SAN nanofibers. The effects of $BMIPF_6$ addition on the morphology of the nanofibers were explained in terms of surface tension, viscosity and conductivity. After exposing the SAN/$BMIPF_6$ nanofibers collected on an interdigitated electrode to alcohol vapours (ethanol, 1-propanol and 1-butanol), the resistance of the nanofibers decreased due to adsorption of alcohol molecules. The electrospun SAN/$BMIPF_6$ nanofibers sensor exhibited good sensitivity and reproducibility.

소수성의 이미다졸리움 이온성 액체 합성과 이들의 물리화학적 특성 조사 (Synthesis of Hydrophobic Imidazolium Ionic Liquids and Studies of Their Physiochemical Properties)

  • 무함마드 살만;이수영;이혜진
    • 공업화학
    • /
    • 제32권3호
    • /
    • pp.277-282
    • /
    • 2021
  • 본 연구에서는 PF6를 음이온으로 하며, 이미다졸리움 계열의 양이온을 변화시키면서 2종의 소수성을 띠는 이온성 액체 전해질을 합성하였다. 합성한 이온성 액체는 1-benzyl-3-butylimidazolium hexafluorophosphate [BzBIM]PF6와 1-pentyl-3-butylimidazolium hexafluorophosphate [PBIM]PF6이며 이들 각각의 구조는 푸에리에 변환 적외선 분광기와 핵자기공명 분광기를 이용하여 분석하였다. 이와 함께, 합성한 이온성 액체 전해질의 물리적(점도, 이온전도도, 열적 안정성) 및 전기화학적 특성을 조사하고 비교 분석하였다. 그 결과, [BzBIM]PF6의 경우 [PBIM]PF6와 다르게 이미다졸리움 양이온에 π-π 분자 간 결합이 강하게 존재하는 벤질링 기능기를 가지고 있어서 열적 및 전기화학적 특성에서 더 우세한 안정성을 보여주었다.

고농축에멀션중합방법을 이용한 분리막제조와 선택적 흡수성 연구 (Preparation of Hydrophilic-Hydrophobic Composites by A Concentrated Emulsion Polymerization Method and Their Permselectivity to Mixture of Water-Ethanol)

  • 박준서
    • 공업화학
    • /
    • 제8권1호
    • /
    • pp.29-38
    • /
    • 1997
  • 고농축에멀션중합방법을 이용하여 친수성-친유성 고분자복합소재를 합성하였다. w/o 형태의 고농축에멀션의 연속상은 styrene이며, 분산상은 수용성 acrylamide용액으로 분산상의 부피분율이 0.74 이상이다. 중합온도에서 에멀션의 안정성에 미치는 주요 요인들로는 친유성액체와 친수성액체의 물리화학적 특성인 극성, pH, 이온세기 및 계면활성제의 종류와 농도가 있다. 친유성액체와 친수성액체 사이의 계면장력이나 친수성액체와 계면활성제 수용액사이의 계면장력에 있어 계면장력의 값이 큰 경우는 높은 에멀션의 안정성을 나타낸다. 계면활성제의 HLB가 3.0~9.0 경우와 계면활성제의 농도가 CMC가 이상에서 에멀션이 높은 안정성을 나타낸다. 전자현미경을 이용한 조사에 의하며 복합재료는 분산상의 Poly acrylamide입자가 망상구조의 얇은 polystyrene필림에 의해 분리된 구조로 이루어져 있음을 보여주고 있다. 고농축에멀션에서부터합성된 고분자복합재료막은 물-에탄온 혼합물에서 물에 대해서 높은 선택성을 나타내었으며, 또 에탄올의 농도가 증가할수록 막의 선택도는 증가하였으나 투과속도는 감소함을 나타내었다.

  • PDF

Effects of Electrolytes in a Liquid Thin Layer System

  • Chung, Taek-Dong
    • 전기화학회지
    • /
    • 제5권4호
    • /
    • pp.216-220
    • /
    • 2002
  • The effects of electrolytes on electrochemical behavior from an oil thin layer interposed between a graphite electrode and an aqueous solution phase were examined. A hydrophobic electroactive species, tetrachloro-1,4-benzoquinone (TCQ), in a benzonitrile (EN) layer was employed to study ion transfer properties across the BN-water interface. Experimental results showed that hydrophobic cations as well as anions could be successfully used as ionic charge carriers. The addition of various salts into either the oil layers or the aqueous solutions offers deeper insight for the electrochemistry of the liquid thin layer system. When aqueous perchloric acid is interfaced with the BN films, the perchlorate ion of tetrahexylammonium perchlorate (THAP) substantially suppresses the dissociated proton concentration in the layer by the common ion effect while there is only a little change in the total acid concentration. Further approach by theoretical calculation makes it possible to quantitatively understand the effect of the electrolytes to the electrochemical responses of TCQ, which were previously reported (Anal. Chem. 73, 337 (2001)).

Electrochemical properties of gel copolymer- electrolyte based on Phosphonium ionic liquid

  • Cha, E.H.;Lim, S.A.;Park, J.H.;Kim, D.W.;Park, J.H.
    • 전기화학회지
    • /
    • 제11권4호
    • /
    • pp.304-308
    • /
    • 2008
  • Noble Poly (lithium 2-acrylamido-2-methyl propane sulfonate) and its copolymer with N-vinyl formamide based on trihexyl (tetradecyl) phosphonium acetate [$(C_6H_{13})_3$ P ($C_{14}H_{29}$) $CH_3COO$; $P_{66614}$ $CH_3COO$] and trihexyl (tetradecyl)phosphonium bis(trifluoromethane sulfonyl) amide ([$(C_6H_{13})_3P(C_{14}H_{29})$] [TFSA];$P_{66614}TFSA$) were prepared and analyzed to determine their characteristics and properties. The ionic conductivity of a copolymer based $P_{66614}TFSA$ ionic liquid system exhibits a higher conductivity ($8.9{\times}10^{-5}Scm^{-1}$) than that of a copolymer based $P_{66614}CH_3COO$ system ($1.57{\times}10^{-5}Scm^{-1})$. The charge on the TFSA anion is spread very diffusely through the S-N-S core and particularly in the trifluoromethane groups, and this diffusion results in a decreased interaction between the cation and the anion. The viscosity of $P_{66614}TFSA$ (39 cP at 343 K) and $P_{66614}CH_3COO$ (124 cP at 343 K), which is very hydrophobic, was fairly high. High viscosity leads to a slow rate of diffusion of redox species. The ionic conductivity of copolymer of a phosphonium ionic liquid system also exhibits higher conductivity than that of a homopolymer system. Phosphonium ionic liquids were thermally stable at temperatures up to $400^{\circ}C$.

Electrostatic and Hydrophobic Nature of the Cytochrome c-Membrane Interaction

  • Kim, Ukchun;Kim, Kyunghoon;Sanghwa Han
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1999년도 학술발표회 진행표 및 논문초록
    • /
    • pp.45-45
    • /
    • 1999
  • Cytochrome c (cyt c) binds to acidic membranes at low ionic strength. Replacement of Lys-72 or Lys-87 by Glu reduced the binding affinity of cyt c toward large unilamellar vesicles (LUV) in liquid crystalline phase. The differences were smaller for LUV in gel phase. A fraction of bound cyt c was non-electrostatically associated.(omitted)

  • PDF

Solvation of a Small Metal-Binding Peptide in Room-Temperature Ionic Liquids

  • Shim, Youngseon;Kim, Hyung J.;Jung, YounJoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권11호
    • /
    • pp.3601-3606
    • /
    • 2012
  • Structural properties of a small hexapeptide molecule modeled after metal-binding siderochrome immersed in a room-temperature ionic liquid (RTIL) are studied via molecular dynamics simulations. We consider two different RTILs, each of which is made up of the same cationic species, 1-butyl-3-methylimidazolium ($BMI^+$), but different anions, hexafluorophosphate ($PF_6{^-}$) and chloride ($Cl^-$). We investigate how anionic properties such as hydrophobicity/hydrophilicity or hydrogen bonding capability affect the stabilization of the peptide in RTILs. To examine the effect of peptide-RTIL electrostatic interactions on solvation, we also consider a hypothetical solvent $BMI^0Cl^0$, a non-ionic counter-part of $BMI^+Cl^-$. For reference, we investigate solvation structures in common polar solvents, water and dimethylsulfoxide (DMSO). Comparison of $BMI^+Cl^-$ and $BMI^0Cl^0$ shows that electrostatic interactions of the peptide and RTIL play a significant role in the conformational fluctuation of the peptide. For example, strong electrostatic interactions between the two favor an extended conformation of the peptide by reducing its structural fluctuations. The hydrophobicity/hydrophilicity of RTIL anions also exerts a notable influence; specifically, structural fluctuations of the peptide become reduced in more hydrophilic $BMI^+Cl^-$, compared with those in more hydrophobic $BMI^+PF_6{^-}$. This is ascribed to the good hydrogen-bond accepting power of chloride anions, which enables them to bind strongly to hydroxyl groups of the peptide and to stabilize its structure. Transport properties of the peptide are examined briefly. Translations of the peptide significantly slow down in highly viscous RTILs.