DOI QR코드

DOI QR Code

Synthesis of Hydrophobic Imidazolium Ionic Liquids and Studies of Their Physiochemical Properties

소수성의 이미다졸리움 이온성 액체 합성과 이들의 물리화학적 특성 조사

  • Salman, Muhammad (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University) ;
  • Lee, Sooyoung (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University) ;
  • Lee, Hye Jin (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University)
  • 무함마드 살만 (경북대학교 자연과학대학 화학과 및 청정나노소재 연구소) ;
  • 이수영 (경북대학교 자연과학대학 화학과 및 청정나노소재 연구소) ;
  • 이혜진 (경북대학교 자연과학대학 화학과 및 청정나노소재 연구소)
  • Received : 2021.03.16
  • Accepted : 2021.04.12
  • Published : 2021.06.10

Abstract

Two hydrophobic imidazolium based ionic liquids including 1-benzyl-3-butylimidazolium hexafluorophosphate [BzBIM]PF6 and 1-pentyl-3-butylimidazolium hexafluorophosphate [PBIM]PF6 having the same anion and different cation parts were synthesized. The structural composition of these ionic liquids were confirmed with Fourier-transform infrared spectroscopy (FT-IR) and proton nuclear magnetic resonance (1H-NMR). Their physiochemical properties such as viscosity, ionic conductivity and thermal stability alongside electrochemical potential window range for both ionic liquid electrolytes were characterized and compared to each other. The overall results revealed that [BzBIM]PF6 has higher thermal and electrochemical stabilities and viscosity than that of [PBIM]PF6 probably due to the presence of benzyl ring in the imidazolium cation providing strong intermolecular π-π interactions.

본 연구에서는 PF6를 음이온으로 하며, 이미다졸리움 계열의 양이온을 변화시키면서 2종의 소수성을 띠는 이온성 액체 전해질을 합성하였다. 합성한 이온성 액체는 1-benzyl-3-butylimidazolium hexafluorophosphate [BzBIM]PF6와 1-pentyl-3-butylimidazolium hexafluorophosphate [PBIM]PF6이며 이들 각각의 구조는 푸에리에 변환 적외선 분광기와 핵자기공명 분광기를 이용하여 분석하였다. 이와 함께, 합성한 이온성 액체 전해질의 물리적(점도, 이온전도도, 열적 안정성) 및 전기화학적 특성을 조사하고 비교 분석하였다. 그 결과, [BzBIM]PF6의 경우 [PBIM]PF6와 다르게 이미다졸리움 양이온에 π-π 분자 간 결합이 강하게 존재하는 벤질링 기능기를 가지고 있어서 열적 및 전기화학적 특성에서 더 우세한 안정성을 보여주었다.

Keywords

Acknowledgement

This research was supported by Korea Electric Power Corporation (Grant number: R20XO02-24).

References

  1. J. M. Andanson, X. Meng, M. Traikia, and P. Husson, Quantification of the impact of water as an impurity on standard physico-chemical properties of ionic liquids, J. Chem. Thermodyn., 94, 169-176 (2016). https://doi.org/10.1016/j.jct.2015.11.008
  2. N. V. Plechkova, and K. R. Seddon, Applications of ionic liquids in the chemical industry, Chem. Soc. Rev., 37, 123-150 (2008). https://doi.org/10.1039/B006677J
  3. A. M. O'Mahony, D. S. Silvester, L. Aldous, C. Hardacre, and R. G. Compton, Effect of water on the electrochemical window and potential limits of room-temperature ionic liquids, J. Chem. Eng. Data, 53, 2884-2891 (2008). https://doi.org/10.1021/je800678e
  4. J. Salminen, N. Papaiconomou, R. A. Kumara, J. M. Lee, J. Kerr, J. Newman, and J. M. Prausnitz, Physicochemical properties and toxicities of hydrophobic piperidinium and pyrrolidinium ionic liquids, Fluid Ph. Equilibria, 261, 421-426 (2007). https://doi.org/10.1016/j.fluid.2007.06.031
  5. N. Papaiconomou, N. Yakelis, J. Salminen, R. Bergman, and J. M. Prausnitz, Synthesis and properties of seven ionic liquids containing 1-methyl-3-octylimidazolium or 1-butyl-4-methylpyridinium cations, J. Chem. Eng. Data, 51, 1389-1393 (2006). https://doi.org/10.1021/je060096y
  6. H. Luo, S. Dai, and P. V. Bonnesen, Solvent extraction of Sr2+ and Cs+ based on room-temperature ionic liquids containing monoaza-substituted crown ethers, Anal. Chem., 76, 2773-2779 (2004). https://doi.org/10.1021/ac035473d
  7. E. Simonetti, M. De Francesco, M. Bellusci, G. T. Kim, F. Wu, S. Passerini, and G. B. Appetecchi, A more sustainable and cheaper one-pot route for the synthesis of hydrophobic ionic liquids for electrolyte applications, ChemSusChem, 12, 4946-4952 (2019). https://doi.org/10.1002/cssc.201902054
  8. M. Montanino, F. Alessandrini, S. Passerini, and G. B. Appetecchi, Water-based synthesis of hydrophobic ionic liquids for high-energy electrochemical devices, Electrochim. Acta, 96, 124-133 (2013). https://doi.org/10.1016/j.electacta.2013.02.082
  9. Z. Li, X. Zhang, H. Dong, X. Zhang, H. Gao, S. Zhang, J. Li, and C. Wang, Efficient absorption of ammonia with hydroxyl-functionalized ionic liquids, RSC Adv., 5, 81362-81370 (2015). https://doi.org/10.1039/C5RA13730F
  10. L. G., Q. Zhou, X. Zhang, L. Wang, S. Zhang, and J. Li, Solubilities of ammonia in basic imidazolium ionic liquids, Fluid Phase Equilib., 297, 34-39 (2010). https://doi.org/10.1016/j.fluid.2010.06.005
  11. M. Sureshkumar and C. K. Lee, Biocatalytic reactions in hydrophobic ionic liquids, J. Mol. Catal. B Enzym., 60, 1-12 (2009). https://doi.org/10.1016/j.molcatb.2009.03.008
  12. R. Sulaiman, I. Adeyemi, S. R. Abraham, S. W. Hasan, and I. M. AlNashef, Liquid-liquid extraction of chlorophenols from wastewater using hydrophobic ionic liquids, J. Mol. Liq., 294, 111680 (2019). https://doi.org/10.1016/j.molliq.2019.111680
  13. C. Wang, Y. Tong, Y. Huang, H. Zhang, and Y. Yang, Selone behavior towards palladium(ii) extraction with hydrophobic ionic liquids and mechanism studies, RSC Adv., 5, 63087-63094 (2015). https://doi.org/10.1039/C5RA06334E
  14. H. Nakagawa, S. Izuchi, K. Kuwana, T. Nukuda, and Y. Aihara, Liquid and polymer gel electrolytes for lithium batteries composed of room-temperature molten salt doped by lithium salt, J. Electrochem. Soc., 150, A695 (2003). https://doi.org/10.1149/1.1568939
  15. X. Zhu, M. Du, J. Feng, H. Wang, Z. Xu, L. Wang, S. Zuo, C. Wang, Z. Wang, C. Zhang, X. Ren, S. Priya, D. Yang, and S. F. Liu, High-efficiency perovskite solar cells with imidazolium-based ionic liquid for surface passivation and charge transport, Angew. Chem. Int. Ed., 60, 4238-4244 (2021). https://doi.org/10.1002/anie.202010987
  16. K. Fukumoto, and H. Ohno, Design and synthesis of hydrophobic and chiral anions from amino acids as precursor for functional ionic liquids, Chem. Commun., 29, 3081-3083 (2006). https://doi.org/10.1039/b606613e
  17. P. Bonhote, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram, and M. Gratzel, Hydrophobic, highly conductive ambient-temperature molten salts, Inorg. Chem., 35, 1168-1178 (1996). https://doi.org/10.1021/ic951325x
  18. N. Papaiconomou, J. Salminen, J. M. Lee, and J. M. Prausnitz, Physicochemical properties of hydrophobic ionic liquids containing 1-octylpyridinium, 1-octyl-2-methylpyridinium, or 1-octyl-4-methylpyridinium cations, J. Chem. Eng. Data, 52, 833-840 (2007). https://doi.org/10.1021/je060440r
  19. S. Keskin, D. Kayrak-Talay, U. Akman, and O. Hortacsu, A review of ionic liquids towards supercritical fluid applications, J. Supercrit. Fluid, 43, 150-180 (2007). https://doi.org/10.1016/j.supflu.2007.05.013
  20. R. R. Hawker, R. S. Haines, and J. B. Harper, Variation of the cation of ionic liquids the effects on their physicochemical properties and reaction outcome, Targets Heterocycl. Syst. Prop., 18, 141-213 (2015).
  21. M. Kermanioryani, M. I. A. Mutalib, Y. Dong, K. C. Lethesh, O. B. Ben Ghanem, K. A. Kurnia, N. F. Aminuddin, and J. M. Leveque, Physicochemical properties of new imidazolium-based ionic liquids containing aromatic group, J. Chem. Eng. Data, 61, 2020-2026 (2016). https://doi.org/10.1021/acs.jced.5b00983
  22. P. A. Hunt, Why does a reduction in hydrogen bonding lead to an increase in viscosity for the 1-butyl-2,3-dimethyl-imidazolium-based ionic liquids?, J. Phys. Chem. B, 111, 4844-4853 (2007). https://doi.org/10.1021/jp067182p
  23. S. Han, M. Luo, X. L. Zhou, Z. He, and L. P. Xiong, Synthesis of dipentyl carbonate by transesterification using basic ionic liquid [bmIm]OH catalyst, Ind. Eng. Chem. Res., 51, 5433-5437 (2012). https://doi.org/10.1021/ie202628m
  24. S. A. Dharaskar, K. L. Wasewar, M. N. Varma, D. Z. Shende, and C. Yoo, Synthesis, characterization and application of 1-butyl-3-methylimidazolium tetrafluoroborate for extractive desulfurization of liquid fuel, Arab. J. Chem., 9, 578-587 (2016). https://doi.org/10.1016/j.arabjc.2013.09.034
  25. M. Salman and H. J. Lee, Synthesis and electrolyte characterization of 1-benzyl-3-butylimidazolium hydroxide, Appl. Chem. Eng., 31, 603-606 (2020). https://doi.org/10.14478/ACE.2020.1076
  26. Z. Xue, L. Qin, J. Jiang, T. Mu, and G. Gao, Thermal, electrochemical and radiolytic stabilities of ionic liquids, Phys. Chem. Chem. Phys., 20, 8382-8402 (2018). https://doi.org/10.1039/C7CP07483B
  27. S. M. Mahurin, T. Dai, J. S. Yeary, H. Luo, and S. Dai, Benzyl-functionalized room temperature ionic liquids for CO2/N2 separation, Ind. Eng. Chem. Res., 50, 14061-14069 (2011). https://doi.org/10.1021/ie201428k
  28. H. L. Ngo, K. LeCompte, L. Hargens, and A. B. McEwen, Thermal properties of imidazolium ionic liquids, Thermochim. Acta, 357-358, 97-120 (2000). https://doi.org/10.1016/S0040-6031(00)00373-7
  29. M. Kosmulski, J. Gustafsson, and J. B. Rosenholm, Thermal stability of low temperature ionic liquids revisited, Thermochim. Acta, 412, 47-53 (2004). https://doi.org/10.1016/j.tca.2003.08.022
  30. C. Comminges, R. Barhdadi, M. Laurent, and M. Troupel, Determination of viscosity, ionic conductivity, and diffusion coefficients in some binary systems: Ionic liquids + molecular solvents, J. Chem. Eng. Data, 51, 680-685 (2006). https://doi.org/10.1021/je0504515
  31. K. Paduszynski and U. Domanska, Viscosity of ionic liquids: An extensive database and a new group contribution model based on a feed-forward artificial neural network, J. Chem. Inf. Model., 54, 1311-1324 (2014). https://doi.org/10.1021/ci500206u
  32. H. O. Bourbigou, and L. Magna, Ionic liquids perspectives for organic and catalytic reactions, J. Mol. Catal. A Chem., 182, 419-437 (2002). https://doi.org/10.1016/S1381-1169(01)00465-4
  33. C. Hardacre, J. D. Holbrey, S. P. Katdare, and K. R. Seddon, Alternating copolymerisation of styrene and carbon monoxide in ionic liquids, Green Chem., 4, 143-146 (2002). https://doi.org/10.1039/b111157b
  34. H. Jin, B. O'Hare, J. Dong, S. Arzhantsev, G. A. Baker, J. F. Wishart, A. J. Benesi, and M. Maroncelli, Physical properties of ionic liquids consisting of the 1-butyl-3-methylimidazolium cation with various anions and the bis(trifluoromethylsulfonyl)imide anion with various cations, J. Phys. Chem. B, 112, 81-92 (2008). https://doi.org/10.1021/jp076462h
  35. J. Pitawala, A. Matic, A. Martinelli, P. Jacobsson, V. Koch, and F. Croce, Thermal properties and ionic conductivity of imidazolium bis(trifluoromethanesulfonyl)imide dicationic ionic liquids, J. Phys. Chem. B, 113, 10607-10610 (2009). https://doi.org/10.1021/jp904989s
  36. S. Carda-Broch, A. Berthod, and D. W. Armstrong, Solvent properties of the 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid, Anal. Bioanal. Chem., 375, 191-199 (2003). https://doi.org/10.1007/s00216-002-1684-1
  37. H. Matsumoto. In Electrochemical Aspects of Ionic Liquid, pp 43-63, H. Ohno, Ed.; John Wiley & Sons, Inc. (2011).
  38. R. P. Putra, H. Horino, and I. I. Rzeznicka, An efficient electrocatalyst for oxygen evolution reaction in alkaline solutions derived from a copper chelate polymer via in situ electrochemical transformation, Catalysts, 10, 233 (2020). https://doi.org/10.3390/catal10020233
  39. Q. B. Li, J. Y. Jiang, G. F. Li, W. C. Zhao, X. H. Zhao, and T. C. Mu, The electrochemical stability of ionic liquids and deep eutectic solvents, Sci. China Chem., 59, 571-577 (2016). https://doi.org/10.1007/s11426-016-5566-3