Acknowledgement
This research was supported by Korea Electric Power Corporation (Grant number: R20XO02-24).
References
- J. M. Andanson, X. Meng, M. Traikia, and P. Husson, Quantification of the impact of water as an impurity on standard physico-chemical properties of ionic liquids, J. Chem. Thermodyn., 94, 169-176 (2016). https://doi.org/10.1016/j.jct.2015.11.008
- N. V. Plechkova, and K. R. Seddon, Applications of ionic liquids in the chemical industry, Chem. Soc. Rev., 37, 123-150 (2008). https://doi.org/10.1039/B006677J
- A. M. O'Mahony, D. S. Silvester, L. Aldous, C. Hardacre, and R. G. Compton, Effect of water on the electrochemical window and potential limits of room-temperature ionic liquids, J. Chem. Eng. Data, 53, 2884-2891 (2008). https://doi.org/10.1021/je800678e
- J. Salminen, N. Papaiconomou, R. A. Kumara, J. M. Lee, J. Kerr, J. Newman, and J. M. Prausnitz, Physicochemical properties and toxicities of hydrophobic piperidinium and pyrrolidinium ionic liquids, Fluid Ph. Equilibria, 261, 421-426 (2007). https://doi.org/10.1016/j.fluid.2007.06.031
- N. Papaiconomou, N. Yakelis, J. Salminen, R. Bergman, and J. M. Prausnitz, Synthesis and properties of seven ionic liquids containing 1-methyl-3-octylimidazolium or 1-butyl-4-methylpyridinium cations, J. Chem. Eng. Data, 51, 1389-1393 (2006). https://doi.org/10.1021/je060096y
- H. Luo, S. Dai, and P. V. Bonnesen, Solvent extraction of Sr2+ and Cs+ based on room-temperature ionic liquids containing monoaza-substituted crown ethers, Anal. Chem., 76, 2773-2779 (2004). https://doi.org/10.1021/ac035473d
- E. Simonetti, M. De Francesco, M. Bellusci, G. T. Kim, F. Wu, S. Passerini, and G. B. Appetecchi, A more sustainable and cheaper one-pot route for the synthesis of hydrophobic ionic liquids for electrolyte applications, ChemSusChem, 12, 4946-4952 (2019). https://doi.org/10.1002/cssc.201902054
- M. Montanino, F. Alessandrini, S. Passerini, and G. B. Appetecchi, Water-based synthesis of hydrophobic ionic liquids for high-energy electrochemical devices, Electrochim. Acta, 96, 124-133 (2013). https://doi.org/10.1016/j.electacta.2013.02.082
- Z. Li, X. Zhang, H. Dong, X. Zhang, H. Gao, S. Zhang, J. Li, and C. Wang, Efficient absorption of ammonia with hydroxyl-functionalized ionic liquids, RSC Adv., 5, 81362-81370 (2015). https://doi.org/10.1039/C5RA13730F
- L. G., Q. Zhou, X. Zhang, L. Wang, S. Zhang, and J. Li, Solubilities of ammonia in basic imidazolium ionic liquids, Fluid Phase Equilib., 297, 34-39 (2010). https://doi.org/10.1016/j.fluid.2010.06.005
- M. Sureshkumar and C. K. Lee, Biocatalytic reactions in hydrophobic ionic liquids, J. Mol. Catal. B Enzym., 60, 1-12 (2009). https://doi.org/10.1016/j.molcatb.2009.03.008
- R. Sulaiman, I. Adeyemi, S. R. Abraham, S. W. Hasan, and I. M. AlNashef, Liquid-liquid extraction of chlorophenols from wastewater using hydrophobic ionic liquids, J. Mol. Liq., 294, 111680 (2019). https://doi.org/10.1016/j.molliq.2019.111680
- C. Wang, Y. Tong, Y. Huang, H. Zhang, and Y. Yang, Selone behavior towards palladium(ii) extraction with hydrophobic ionic liquids and mechanism studies, RSC Adv., 5, 63087-63094 (2015). https://doi.org/10.1039/C5RA06334E
- H. Nakagawa, S. Izuchi, K. Kuwana, T. Nukuda, and Y. Aihara, Liquid and polymer gel electrolytes for lithium batteries composed of room-temperature molten salt doped by lithium salt, J. Electrochem. Soc., 150, A695 (2003). https://doi.org/10.1149/1.1568939
- X. Zhu, M. Du, J. Feng, H. Wang, Z. Xu, L. Wang, S. Zuo, C. Wang, Z. Wang, C. Zhang, X. Ren, S. Priya, D. Yang, and S. F. Liu, High-efficiency perovskite solar cells with imidazolium-based ionic liquid for surface passivation and charge transport, Angew. Chem. Int. Ed., 60, 4238-4244 (2021). https://doi.org/10.1002/anie.202010987
- K. Fukumoto, and H. Ohno, Design and synthesis of hydrophobic and chiral anions from amino acids as precursor for functional ionic liquids, Chem. Commun., 29, 3081-3083 (2006). https://doi.org/10.1039/b606613e
- P. Bonhote, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram, and M. Gratzel, Hydrophobic, highly conductive ambient-temperature molten salts, Inorg. Chem., 35, 1168-1178 (1996). https://doi.org/10.1021/ic951325x
- N. Papaiconomou, J. Salminen, J. M. Lee, and J. M. Prausnitz, Physicochemical properties of hydrophobic ionic liquids containing 1-octylpyridinium, 1-octyl-2-methylpyridinium, or 1-octyl-4-methylpyridinium cations, J. Chem. Eng. Data, 52, 833-840 (2007). https://doi.org/10.1021/je060440r
- S. Keskin, D. Kayrak-Talay, U. Akman, and O. Hortacsu, A review of ionic liquids towards supercritical fluid applications, J. Supercrit. Fluid, 43, 150-180 (2007). https://doi.org/10.1016/j.supflu.2007.05.013
- R. R. Hawker, R. S. Haines, and J. B. Harper, Variation of the cation of ionic liquids the effects on their physicochemical properties and reaction outcome, Targets Heterocycl. Syst. Prop., 18, 141-213 (2015).
- M. Kermanioryani, M. I. A. Mutalib, Y. Dong, K. C. Lethesh, O. B. Ben Ghanem, K. A. Kurnia, N. F. Aminuddin, and J. M. Leveque, Physicochemical properties of new imidazolium-based ionic liquids containing aromatic group, J. Chem. Eng. Data, 61, 2020-2026 (2016). https://doi.org/10.1021/acs.jced.5b00983
- P. A. Hunt, Why does a reduction in hydrogen bonding lead to an increase in viscosity for the 1-butyl-2,3-dimethyl-imidazolium-based ionic liquids?, J. Phys. Chem. B, 111, 4844-4853 (2007). https://doi.org/10.1021/jp067182p
- S. Han, M. Luo, X. L. Zhou, Z. He, and L. P. Xiong, Synthesis of dipentyl carbonate by transesterification using basic ionic liquid [bmIm]OH catalyst, Ind. Eng. Chem. Res., 51, 5433-5437 (2012). https://doi.org/10.1021/ie202628m
- S. A. Dharaskar, K. L. Wasewar, M. N. Varma, D. Z. Shende, and C. Yoo, Synthesis, characterization and application of 1-butyl-3-methylimidazolium tetrafluoroborate for extractive desulfurization of liquid fuel, Arab. J. Chem., 9, 578-587 (2016). https://doi.org/10.1016/j.arabjc.2013.09.034
- M. Salman and H. J. Lee, Synthesis and electrolyte characterization of 1-benzyl-3-butylimidazolium hydroxide, Appl. Chem. Eng., 31, 603-606 (2020). https://doi.org/10.14478/ACE.2020.1076
- Z. Xue, L. Qin, J. Jiang, T. Mu, and G. Gao, Thermal, electrochemical and radiolytic stabilities of ionic liquids, Phys. Chem. Chem. Phys., 20, 8382-8402 (2018). https://doi.org/10.1039/C7CP07483B
- S. M. Mahurin, T. Dai, J. S. Yeary, H. Luo, and S. Dai, Benzyl-functionalized room temperature ionic liquids for CO2/N2 separation, Ind. Eng. Chem. Res., 50, 14061-14069 (2011). https://doi.org/10.1021/ie201428k
- H. L. Ngo, K. LeCompte, L. Hargens, and A. B. McEwen, Thermal properties of imidazolium ionic liquids, Thermochim. Acta, 357-358, 97-120 (2000). https://doi.org/10.1016/S0040-6031(00)00373-7
- M. Kosmulski, J. Gustafsson, and J. B. Rosenholm, Thermal stability of low temperature ionic liquids revisited, Thermochim. Acta, 412, 47-53 (2004). https://doi.org/10.1016/j.tca.2003.08.022
- C. Comminges, R. Barhdadi, M. Laurent, and M. Troupel, Determination of viscosity, ionic conductivity, and diffusion coefficients in some binary systems: Ionic liquids + molecular solvents, J. Chem. Eng. Data, 51, 680-685 (2006). https://doi.org/10.1021/je0504515
- K. Paduszynski and U. Domanska, Viscosity of ionic liquids: An extensive database and a new group contribution model based on a feed-forward artificial neural network, J. Chem. Inf. Model., 54, 1311-1324 (2014). https://doi.org/10.1021/ci500206u
- H. O. Bourbigou, and L. Magna, Ionic liquids perspectives for organic and catalytic reactions, J. Mol. Catal. A Chem., 182, 419-437 (2002). https://doi.org/10.1016/S1381-1169(01)00465-4
- C. Hardacre, J. D. Holbrey, S. P. Katdare, and K. R. Seddon, Alternating copolymerisation of styrene and carbon monoxide in ionic liquids, Green Chem., 4, 143-146 (2002). https://doi.org/10.1039/b111157b
- H. Jin, B. O'Hare, J. Dong, S. Arzhantsev, G. A. Baker, J. F. Wishart, A. J. Benesi, and M. Maroncelli, Physical properties of ionic liquids consisting of the 1-butyl-3-methylimidazolium cation with various anions and the bis(trifluoromethylsulfonyl)imide anion with various cations, J. Phys. Chem. B, 112, 81-92 (2008). https://doi.org/10.1021/jp076462h
- J. Pitawala, A. Matic, A. Martinelli, P. Jacobsson, V. Koch, and F. Croce, Thermal properties and ionic conductivity of imidazolium bis(trifluoromethanesulfonyl)imide dicationic ionic liquids, J. Phys. Chem. B, 113, 10607-10610 (2009). https://doi.org/10.1021/jp904989s
- S. Carda-Broch, A. Berthod, and D. W. Armstrong, Solvent properties of the 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid, Anal. Bioanal. Chem., 375, 191-199 (2003). https://doi.org/10.1007/s00216-002-1684-1
- H. Matsumoto. In Electrochemical Aspects of Ionic Liquid, pp 43-63, H. Ohno, Ed.; John Wiley & Sons, Inc. (2011).
- R. P. Putra, H. Horino, and I. I. Rzeznicka, An efficient electrocatalyst for oxygen evolution reaction in alkaline solutions derived from a copper chelate polymer via in situ electrochemical transformation, Catalysts, 10, 233 (2020). https://doi.org/10.3390/catal10020233
- Q. B. Li, J. Y. Jiang, G. F. Li, W. C. Zhao, X. H. Zhao, and T. C. Mu, The electrochemical stability of ionic liquids and deep eutectic solvents, Sci. China Chem., 59, 571-577 (2016). https://doi.org/10.1007/s11426-016-5566-3