DOI QR코드

DOI QR Code

Electrochemical properties of gel copolymer- electrolyte based on Phosphonium ionic liquid

  • Cha, E.H. (Dept. of Liberal Art and Science, Hoseo University) ;
  • Lim, S.A. (School of AIBN, Queensland Univ.) ;
  • Park, J.H. (Dept. of Chemistry, Korea Univ.) ;
  • Kim, D.W. (Dept. of Chemical Engineering, HanYang Univ.) ;
  • Park, J.H. (Dept. of natural Science, Hoseo University)
  • Published : 2008.11.30

Abstract

Noble Poly (lithium 2-acrylamido-2-methyl propane sulfonate) and its copolymer with N-vinyl formamide based on trihexyl (tetradecyl) phosphonium acetate [$(C_6H_{13})_3$ P ($C_{14}H_{29}$) $CH_3COO$; $P_{66614}$ $CH_3COO$] and trihexyl (tetradecyl)phosphonium bis(trifluoromethane sulfonyl) amide ([$(C_6H_{13})_3P(C_{14}H_{29})$] [TFSA];$P_{66614}TFSA$) were prepared and analyzed to determine their characteristics and properties. The ionic conductivity of a copolymer based $P_{66614}TFSA$ ionic liquid system exhibits a higher conductivity ($8.9{\times}10^{-5}Scm^{-1}$) than that of a copolymer based $P_{66614}CH_3COO$ system ($1.57{\times}10^{-5}Scm^{-1})$. The charge on the TFSA anion is spread very diffusely through the S-N-S core and particularly in the trifluoromethane groups, and this diffusion results in a decreased interaction between the cation and the anion. The viscosity of $P_{66614}TFSA$ (39 cP at 343 K) and $P_{66614}CH_3COO$ (124 cP at 343 K), which is very hydrophobic, was fairly high. High viscosity leads to a slow rate of diffusion of redox species. The ionic conductivity of copolymer of a phosphonium ionic liquid system also exhibits higher conductivity than that of a homopolymer system. Phosphonium ionic liquids were thermally stable at temperatures up to $400^{\circ}C$.

Keywords

References

  1. Wataru Ogihara, Satiko Washiro, Hiromitsu nakajima, and Hiroyuki Ohno, 'Effect of Cation Sturucture on the Electrochemical and Thermal Properties of ioN Conductive Polymers Obtained From Polymerizable Ionic Liquids' Electro Chimica Acta 51, 2614 (2006) https://doi.org/10.1016/j.electacta.2005.07.043
  2. Qing Dai, David B.Menzies, D. R. Macfarlane, Stuart R, Batten, Stewart Forsyth, Leone Spiccia, Yi-Bing Cheng, and Maria Forsyth, 'Dye Sensitized Nanocrystalline Solar Cells Incorporating Ethylmethylimidazolium-based Ionic Liquid Electrolytes' C.R.Chimie 9, 617 (2006) https://doi.org/10.1016/j.crci.2005.03.028
  3. Hiroyuki Ohno, Masahiro Yoshizawa, and Wataru Ogihara, 'Development of New Class of Ion Conductive Polymers Based on Ionic Liquid' ElectroChimica Acta 50, 255 (2004) https://doi.org/10.1016/j.electacta.2004.01.091
  4. Thomas E. Sutto, Hugh C. De long, and Paul C. Trulove 'Physical Properties of Substituted Imidazolium Based Ionic Liquids Gel Electrolyte' Z.Naturforch.57a, 839 (2002)
  5. R. T. Carlin, J. Fuller, W. K.Kuhn, M. J. Lysaght, and P. C. Trulove, 'Elctrochemistry of Room-temperature Chloroaluminate Molten Salts at Graphitic and Nongraphitic Electrodes' J.Appl. Electrochem. 26, 1147 (1996)
  6. J. Sun, M. Forsyth, D. R. Macfarlane, 'Room- temperature Molten Salts Based on Quarternary Ammonium ion' J.Phys.chem.b, 102, 8858 (1998) https://doi.org/10.1021/jp981159p
  7. D. R. Macfarlane, P. Meakin, J. Sun, N. Amini, and M. Forsyth. 'Ionic Liquids Based on Imidazolium, Ammonium and Pyrrolidinium Salts of the dIcynamide Anion' Phys.chem.b, 103, 4164 (1999) https://doi.org/10.1021/jp984145s
  8. H. Matsumoto, H. Sakaebe, K. Tatsumi, and J. Power Sourses, 146, 45 (2005) https://doi.org/10.1016/j.jpowsour.2005.03.103
  9. R. E. Ramirez and E. M.Sanchez, 'Molten Phosphonium Iodides as Electrolytes in Dye-sensitized Nanocrystalline Solar Cells' Energy Mater.Sol.Cells. 90, 2384 (2006) https://doi.org/10.1016/j.solmat.2006.03.011
  10. R. E. Ramirez, L. C. Torres Gonzalez, and E. M. Sanchez, 'Electrochemical Aspects of Asymmetric Phosphonium Ionic Liquids' J. ElectroChem. Soc, 154. B 229 (2007) https://doi.org/10.1149/1.2404789
  11. N. Ito, S. Arzhanysev, M. Heitz, and M. Maroncelli 'Solvation Dynamics and Rotation of Coumarin 153 in Alkylphosphonium Ionic Liquids' J.Phys.Chem.B108, 5771 (2004) https://doi.org/10.1021/jp0499575
  12. J. Sun, D. R. Macfarlane, and M. Forsyth, 'Lithium Polyelectrolyte-ionic Liquid Systems' Solid state ionics 147, 333 (2002) https://doi.org/10.1016/S0167-2738(02)00028-0
  13. E. H. Cha, S. A. Lim, J. H. Parkc, D. W. Kim , and D. R. Macfarlane, 'Ionic Conductivity Studies of Gel Polyelectrolyte Based on Ionic Liquid' J. Power Sources, 178, 779 (2008) https://doi.org/10.1016/j.jpowsour.2007.10.033
  14. J. Sun, D. R. Macfarlane, and M. Forsyth, 'Lithium Polyelectrolyte-ionic Liquid Systems' solid state Ionics 147, 333(2002) https://doi.org/10.1016/S0167-2738(02)00028-0
  15. Jeniffer M. Pringle, Jake Golding, Krisztian Baranyai, Craig M. Forsyth, Glen B. Deacon, Janet L. Scott, and Douglas R. Macfarlane 'The Effect of Anion Fluorination in Inonic Liquids-physical Properties of a Range of bis (methanesulfonyl) Amide Salts New Journal of Chemistry, 127, 1504 (2003)
  16. R. Y. Bruce 'Organic Chemistry', Prence Hall, 1995
  17. Katsuhiko Tsunashima, Masashi Suiya, 'Physical and Electrochemical Properties of Low-viscosity Phosphonium Ionic Liquids as Potential Elecrolytes.' Electrochemistry Communications 9, 233 (2007) https://doi.org/10.1016/j.elecom.2006.08.050
  18. James Vauhan, Jack Tu, and David Dreisinger, 'Ionic Liquid Electro-Deposition of Reactive metals' J. Minerals, Metals & Materials Society'
  19. C. Bradaric et.al., in Ionic Liquids, as Green Solvents Progress and Prospects, R.Rogers and K.Seddon, Editors, p.41 American Chemical Society (2003)