• Title/Summary/Keyword: Hydromagnetic Flow

Search Result 17, Processing Time 0.025 seconds

ACCURATE SOLUTION FOR SLIDING BURGER FLUID FLOW

  • ZUBAIR, MUHAMMAD;HAYAT, TASAWAR
    • Journal of applied mathematics & informatics
    • /
    • v.37 no.5_6
    • /
    • pp.429-442
    • /
    • 2019
  • This article addresses the influence of partial slip condition in the hydromagnetic flow of Burgers fluid in a rotating frame of reference.The flows are induced by oscillation of a boundary. Two problems for oscillatory flows are considered. Exact solutions to the resulting boundary value problems are constructed. Analysis has been carried out in the presence of magnetic field. Physical interpretation is made through the plots for various embedded parameters.

Hall Effect on Couette Flow with Heat Transfer of a Dusty Conducting Fluid Between Parallel Porous Plates Under Exponential Decaying Pressure Gradient

  • Attia Hazem A.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.569-579
    • /
    • 2006
  • In the present study, the unsteady Couette flow with heat transfer of a dusty viscous incompressible electrically conducting fluid under the influence of an exponential decaying pressure gradient is studied without neglecting the Hall effect. The parallel plates are assumed to be porous and subjected to a uniform suction from above and injection from below while the fluid is acted upon by an external uniform magnetic field is applied perpendicular to the plates. The governing equations are solved numerically using finite differences to yield the velocity and temperature distributions for both the fluid and dust particles.

Hall Effect on Unsteady Couette Flow. with Heat Transfer Under Exponential Decaying Pressure Gradient

  • Attia HazemAIi
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2053-2060
    • /
    • 2005
  • The unsteady Couette flow of an electrically conducting, V1SCOUS, incompressible fluid bounded by two parallel non-conducting porous plates is studied with heat transfer taking the Hall effect into consideration. An external uniform magnetic field and a uniform suction and injection are applied perpendicular to the plates while the fluid motion is subjected to an exponential decaying pressure gradient. The two plates are kept at different but constant temperatures while the Joule and viscous dissipations are included in the energy equation. The effect of the ion slip and the uniform suction and injection on both the velocity and temperature distributions is examined.

EFFECT OF ORIENTATION OF A MAGNETIC FIELD ON MOTION OF AN ELECTRICALLY CONDUCTING FLUID IN A CONFINED ENCLOSURE (자장 방향 변화에 따른 밀폐공간 내 도전성 유체의 거동)

  • Han, C.Y.;Jun, H.Y.;Park, E.S.
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.123-130
    • /
    • 2009
  • Hydromagnetic flow in a confined enclosure under a uniform magnetic field is studied numerically. The thermally active side walls of the enclosure are kept at hot and cold temperatures specified, while the top and bottom walls are insulated. The coupled momentum and energy equations associating with the electromagnetic retarding force as well as the buoyancy force terms are solved by an iterative procedure using the SIMPLER algorithm based on control volume approach. The changes in the flow and thermal field based on the orientation of an external magnetic field, which varies from 0 to $2{\pi}$ radians, are investigated. Resulting heat transfer characteristics are examined too.

SORET, HALL CURRENT, ROTATION, CHEMICAL REACTION AND THERMAL RADIATION EFFECTS ON UNSTEADY MHD HEAT AND MASS TRANSFER NATURAL CONVECTION FLOW PAST AN ACCELERATED VERTICAL PLATE

  • VENKATESWARLU, M.;LAKSHMI, D. VENKATA;RAO, K. NAGA MALLESWARA
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.3
    • /
    • pp.203-224
    • /
    • 2016
  • The heat and mass transfer characteristics of the unsteady hydromagnetic natural convection flow with Hall current and Soret effect of an incompressible, viscous, electrically conducting, heat absorbing and optically thin radiating fluid flow past a suddenly started vertical infinite plate through fluid saturated porous medium in a rotating environment are taken into account in this paper. Derivations of exact analytical solutions are aimed under different physical properties. The velocity, concentration and temperature profiles, Sherwood number and Nusselt number are easily examined and discussed via the closed forms obtained. Soret effect and permeability parameter tends to accelerate primary and secondary fluid velocities whereas hall current, radiation and heat absorption have reverse effect on it. Radiation and heat absorption have tendency to enhance rate of heat transfer at the plate. The results obtained here may be further used to verify the validity of obtained numerical solutions for more complicated transient free convection fluid flow problems.

INFLUENCE OF SLIP CONDITION ON RADIATIVE MHD FLOW OF A VISCOUS FLUID IN A PARALLEL POROUS PLATE CHANNEL IN PRESENCE OF HEAT ABSORPTION AND CHEMICAL REACTION.

  • VENKATESWARLU, M.;VENKATA LAKSHMI, D.;DARMAIAH, G.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.4
    • /
    • pp.333-354
    • /
    • 2016
  • The present investigation deals, heat and mass transfer characteristics with the effect of slip on the hydromagnetic pulsatile flow through a parallel plate channel filled with saturated porous medium. Based on the pulsatile flow nature, exact solution of the governing equations for the fluid velocity, temperature and concentration are obtained by using two term perturbation technique subject to physically appropriate boundary conditions. The expressions of skin friction, Nusselt number and Sherwood number are also derived. The numerical values of the fluid velocity, temperature and concentration are displayed graphically whereas those of shear stress, rate of heat transfer and rate of mass transfer at the plate are presented in tabular form for various values of pertinent flow parameters. By increasing the slip parameter at the cold wall the velocity increases whereas the effect is totally reversed in the case of shear stress at the cold wall.

Thermal diffusion and diffusion thermo effects on an unsteady heat and mass transfer magnetohydrodynamic natural convection Couette flow using FEM

  • Raju, R. Srinivasa;Reddy, G. Jithender;Rao, J. Anand;Rashidi, M.M.
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.349-362
    • /
    • 2016
  • The numerical solutions of unsteady hydromagnetic natural convection Couette flow of a viscous, incompressible and electrically conducting fluid between the two vertical parallel plates in the presence of thermal radiation, thermal diffusion and diffusion thermo are obtained here. The fundamental dimensionless governing coupled linear partial differential equations for impulsive movement and uniformly accelerated movement of the plate were solved by an efficient Finite Element Method. Computations were performed for a wide range of the governing flow parameters, viz., Thermal diffusion (Soret) and Diffusion thermo (Dufour) parameters, Magnetic field parameter, Prandtl number, Thermal radiation and Schmidt number. The effects of these flow parameters on the velocity (u), temperature (${\theta}$) and Concentration (${\phi}$) are shown graphically. Also the effects of these pertinent parameters on the skin-friction, the rate of heat and mass transfer are obtained and discussed numerically through tabular forms. These are in good agreement with earlier reported studies. Analysis indicates that the fluid velocity is an increasing function of Grashof numbers for heat and mass transfer, Soret and Dufour numbers whereas the Magnetic parameter, Thermal radiation parameter, Prandtl number and Schmidt number lead to reduction of the velocity profiles. Also, it is noticed that the rate of heat transfer coefficient and temperature profiles increase with decrease in the thermal radiation parameter and Prandtl number, whereas the reverse effect is observed with increase of Dufour number. Further, the concentration profiles increase with increase in the Soret number whereas reverse effect is seen by increasing the values of the Schmidt number.