• Title/Summary/Keyword: Hydrogen-Oxygen Gas

Search Result 410, Processing Time 0.031 seconds

Degradation of Plant Lignin with The Supercritical Ethanol and Ru/C Catalyst Combination for Lignin-oil (초임계 에탄올과 루테늄 촉매에 의한 초본 리그닌의 오일화 반응)

  • Park, Jeesu;Kim, Jae-Young;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.355-363
    • /
    • 2015
  • Asian lignin was efficiently depolymerized with supercritical ethanol and Ru/C catalyst at various reaction temperature (250, 300, and $350^{\circ}C$). Lignin-oil was subjected to several physicochemical analyses such as GC/MS, GPC, and elemental analysis. With increasing reaction temperature, the yield of lignin-oil decreased from 89.5 wt% to 32.1 wt%. The average molecular weight (Mw) and polydispersity index (Mw/Mn) of lignin-oil obtained from $350^{\circ}C$ (547Da, 1.49) dramatically decreased compare to those of original asian lignin (3698Da, 2.68). This is a clear evidence of lignin depolymerization. GC/MS analysis revealed that the yield of monomeric phenols involving guaiacol, 4-ethyl-phenol, 4-methylguaiacol, syringol, and 4-methysyringol increased with increasing reaction temperature, and these were mostly produced with applying hydrogen gas and Ru/C catalyst (76.1 mg/g of lignin). Meanwhile, the carbon content of lignin-oil increased whereas the oxygen content decreased with increasing reaction temperature, suggesting that hydrodeoxygenation was significantly enhanced at higher temperature.

Growth of SiC Oxidation Protective Coating Layers on graphite substrates Using Single Source Precursors

  • Kim, Myung-Chan;Heo, Cheol-Ho;Park, Jin-Hyo;Park, Seung-Jun;Han, Jeon-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.122-122
    • /
    • 1999
  • Graphite with its advantages of high thermal conductivity, low thermal expansion coefficient, and low elasticity, has been widely used as a structural material for high temperature. However, graphite can easily react with oxygen at even low temperature as 40$0^{\circ}C$, resulting in CO2 formation. In order to apply the graphite to high temperature structural material, therefore, it is necessary to improve its oxidation resistive property. Silicon Carbide (SiC) is a semiconductor material for high-temperature, radiation-resistant, and high power/high frequency electronic devices due to its excellent properties. Conventional chemical vapor deposited SiC films has also been widely used as a coating materials for structural applications because of its outstanding properties such as high thermal conductivity, high microhardness, good chemical resistant for oxidation. Therefore, SiC with similar thermal expansion coefficient as graphite is recently considered to be a g행 candidate material for protective coating operating at high temperature, corrosive, and high-wear environments. Due to large lattice mismatch (~50%), however, it was very difficult to grow thick SiC layer on graphite surface. In theis study, we have deposited thick SiC thin films on graphite substrates at temperature range of 700-85$0^{\circ}C$ using single molecular precursors by both thermal MOCVD and PEMOCVD methods for oxidation protection wear and tribological coating . Two organosilicon compounds such as diethylmethylsilane (EDMS), (Et)2SiH(CH3), and hexamethyldisilane (HMDS),(CH3)Si-Si(CH3)3, were utilized as single source precursors, and hydrogen and Ar were used as a bubbler and carrier gas. Polycrystalline cubic SiC protective layers in [110] direction were successfully grown on graphite substrates at temperature as low as 80$0^{\circ}C$ from HMDS by PEMOCVD. In the case of thermal MOCVD, on the other hand, only amorphous SiC layers were obtained with either HMDS or DMS at 85$0^{\circ}C$. We compared the difference of crystal quality and physical properties of the PEMOCVD was highly effective process in improving the characteristics of the a SiC protective layers grown by thermal MOCVD and PEMOCVD method and confirmed that PEMOCVD was highly effective process in improving the characteristics of the SiC layer properties compared to those grown by thermal MOCVD. The as-grown samples were characterized in situ with OES and RGA and ex situ with XRD, XPS, and SEM. The mechanical and oxidation-resistant properties have been checked. The optimum SiC film was obtained at 85$0^{\circ}C$ and RF power of 200W. The maximum deposition rate and microhardness are 2$mu extrm{m}$/h and 4,336kg/mm2 Hv, respectively. The hardness was strongly influenced with the stoichiometry of SiC protective layers.

  • PDF

Formation of MOCVD TiN from a New Precursor (새로운 증착원으로 형성된 MOCVD TiN에 관한 연구)

  • Choe, Jeong-Hwan;Lee, Jae-Gap;Kim, Ji-Yong;Lee, Eun-Gu;Hong, Hae-Nam;Sin, Hyeon-Guk
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.244-250
    • /
    • 1999
  • MOCVD TiN films were prepared from a new TiN precursor, tetrakis(etylmethylamino)titanium (TEMAT) and ammonia. Deposition of TiN films from a single precursor, TEMA T yielded the growth rates of $70 to 1050\AA$/min, depending on the deposition temperature. Furthermore, the excellent bottom coverage of -90% over $0.35\mu\textrm{m}$ contacts was obtained at $275^{\circ}C$. The addition of ammonia to TEMA T lowered the resistivity of as- deposited TiN film to ~ $800\mu\omega-cm$ from $3500~6000\mu\omega-cm$ and improved the stability of TiN film in air. Examination of the films by Auger electron spectroscopy(AES) showed that the oxygen and carbon contents decreased with the addition of ammonia. However, increasing ammonia flow rate decreased the bottom coverage of TiN films over $0.5\mu\textrm{m}$ contacts, probably due to the high sticking coefficient of intermediate species produced from the gas phase reaction of TEMA T and ammonia. Based on the byproduct gases detected by the quadrupole mass spectrometer (QMS), the transammination reaction was proposed to be responsible for TiN deposition. In addition, XPS analysis revealed that the carbon in the films made from TEMA T and ammonia was metallic carbon, suggesting that $\beta$-hydrogen activation process occurs competitively with the transammination reaction.

  • PDF

Crystal Structures of Ni2$^{2+}$ - and Tl$^+$ - Exchanged Zeolite X, $Ni_{17}Tl_{58}Si_{100}Al_{92}O_{384} and Ni_{12}Tl_{68}Si_{100}Al_{92}O_{384}$

  • Song, Mi Gyeong;Yun, Bo Yeong;Kim, Yang
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.2
    • /
    • pp.164-170
    • /
    • 2001
  • The crystal structures of fully dehydrated Ni2+- and Tl+ -exchanged zeolite X (Ni17Tl58-X, and Ni12Tl68-X; X=Si100Al92O384) have been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd3 at $21(1)^{\circ}C$ (a=24.380(4) $\AA$, 24.660(4) $\AA$, respectively). Their structures have been refined to the final error indices R1=0.037 and R2=0.043 with 485 reflections, and R1=0.039 and R2=0.040 with 306 reflections, respectively, for which I >36(I). In Ni17Tl58-X, 17 Ni2+ ions per unit cell were found at only two sites: 15 at site I at the center of the hexagonal prism (Ni-O=2.203(9) $\AA)$ and the remaining 2 at site II near single six-oxygen rings in the supercage (Ni-O=2.16(3) $\AA).$ Fifty-eight Tl+ ions were found at five crystallographic sites: 28 at site II (Tl-O=2.626(8) $\AA)$, 2 at site I' in the sodalite cavity near the hexagonal prism (Tl-O=2.85(1) $\AA)$, another 2 at site II' in the sodalite cavity (Tl-O=2.77(1) $\AA).$ The remaining 26 were found at two nonequivalent Ⅲ' sites with occupancies of 23 and 3. In Ni12Tl68-X, 12 Ni2+ ions per unit cell were found at two sites: 10 at site I (Ni-O=2.37(2) $\AA)$ and the remaining 2 at site II (Ni-O=2.13(2) $\AA).$ Sixty-eight Tl+ ions were found at five crystallographic sites: 28 at site II (Tl-O=2.63(1) $\AA)$, 12 at site I' (Tl-O=2.62(1) $\AA)$, 2 at site II' (Tl-O=3.01(2) $\AA)$, and the remaining 26 at two III' sites with occupancies of 23 and 3. It appears that Ni 2+ ions prefer to occupy site I and II, in that order. The large Tl+ ions occupy the remaining sites, I', II, II' and two different III' sites. In both crystals, only the Ni2+ ions at site II were reduced and migrated to the external surface of zeolite X when these crystals were treated with hydrogen gas.

Effect of Evaluation Conditions on Electrochemical Accelerated Degradation of PEMFC Polymer Membrane (PEMFC 고분자 막의 전기화학적 가속 열화에 미치는 평가조건들의 영향)

  • Sohyeong Oh;Donggeun Yoo;Suk Joo Bae;Sun Geu Chae;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.356-361
    • /
    • 2023
  • In order to improve the durability of the proton exchange membrane fuel cell (PEMFC), it is important to accurately evaluate the durability of the polymer membrane in a short time. The test conditions for chemically accelerated durability evaluation of membranes are high voltage, high temperature, low humidity, and high gas pressure. It can be said that the protocol is developed by changing these conditions. However, the relative influence of each test condition on the degradation of the membrane has not been studied. In chemical accelerated degradation experiment of the membrane, the influence of 4 factors (conditions) was examined through the factor experiment method. The degree of degradation of the membrane after accelerated degradation was determined by measuring the hydrogen permeability and effluent fluoride ion concentration, and it was possible to determine the degradation order of the polymer membrane under 8 conditions by the difference in fluoride ion concentration. It was shown that the influence of the membrane degradation factor was in the order of voltage > temperature > oxygen pressure > humidity. It was confirmed that the degradation of the electrode catalyst had an effect on the chemical degradation of the membrane.

A Study on Soil Washing for Diesel-contaminated Soil by using Decomposition of NaOH/H$_2$O$_2$ (디젤유로 오염된 토양의 NaOH/H$_2$O$_2$ 분해를 이용한 토양세척에 관한 연구)

  • Hwang, Jong-Hyun;Choi, Won-Joon;Kim, Min-Chul;Jung, Jong-Hyeon;Ha, Soo-Ho;Oh, Kwang-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.10
    • /
    • pp.999-1005
    • /
    • 2008
  • The main reaction for soil washing with using sodium hydroxide(NaOH) and hydrogen peroxide(H$_2$O$_2$) was desorption and flotation of petrochemical contaminant by means of oxygen bubble. We found the rate of decomposition by rate constant according to various temperature. For the purpose of optimizing the operation factor, we examined the effect of concentration of NaOH and H$_2$O$_2$, washing time, and soil:water ratio. The rate of decomposition for H$_2$O$_2$ in liquid phase is the first order reaction by its concentration. The rate constant of k$_1$ was 0.9439 $\times$ exp(-1376.82/RT) when concentration of NaOH was lower than 0.1 M, and the rate constant of k$_2$ was 17.3588 $\times$ exp(-2320.06/RT) when it was higher than NaOH of 0.1 M. It found that NaOH was facilitated at the beyond of specific concentration. We confirmed the optimum concentration of NaOH/H$_2$O$_2$ by means of rate constants during soil washing. Also, the optimum conditions during soil washing were washing time of 15 min, soil : water ratio of 1 : 3, and NaOH/H$_2$O$_2$ concentration of 0.25 M/0.1 M.

Effect of Hydrogen Peroxide Enema on Recovery of Carbon Monoxide Poisoning (과산화수소 관장이 급성 일산화탄소중독의 회복에 미치는 영향)

  • Park, Won-Kyun;Chae, E-Up
    • The Korean Journal of Physiology
    • /
    • v.20 no.1
    • /
    • pp.53-63
    • /
    • 1986
  • Carbon monoxide(CO) poisoning has been one of the major environmental problems because of the tissue hypoxia, especially brain tissue hypoxia, due to the great affinity of CO with hemoglobin. Inhalation of the pure oxygen$(0_2)$ under the high atmospheric pressure has been considered as the best treatment of CO poisoning by the supply of $0_2$ to hypoxic tissues with dissolved from in plasma and also by the rapid elimination of CO from the carboxyhemoglobin(HbCO). Hydrogen peroxide $(H_2O_2)$ was rapidly decomposed to water and $0_2$ under the presence of catalase in the blood, but the intravenous administration of $H_2O_2$ is hazardous because of the formation of methemoglobin and air embolism. However, it was reported that the enema of $H_2O_2$ solution below 0.75% could be continuously supplied $0_2$ to hypoxic tissues without the hazards mentioned above. This study was performed to evaluate the effect of $H_2O_2$ enema on the elimination of CO from the HbCO in the recovery of the acute CO poisoning. Rabbits weighting about 2.0 kg were exposed to If CO gas mixture with room air for 30 minutes. After the acute CO poisoning, 30 rabbits were divided into three groups relating to the recovery period. The first group T·as exposed to the room air and the second group w·as inhalated with 100% $0_2$ under 1 atmospheric pressure. The third group was administered 10 ml of 0.5H $H_2O_2$ solution per kg weight by enema immediately after CO poisoning and exposed to the room air during the recovery period. The arterial blood was sampled before and after CO poisoning ana in 15, 30, 60 and 90 minutes of the recovery period. The blood pH, $Pco_2\;and\;Po_2$ were measured anaerobically with a Blood Gas Analyzer and the saturation percentage of HbCO was measured by the Spectrophotometric method. The effect of $H_2O_2$ enema on the recovery from the acute CO poisoning was observed and compared with the room air group and the 100% $0_2$ inhalation group. The results obtained from the experiment are as follows: The pH of arterial blood was significantly decreased after CO poisoning and until the first 15 minutes of the recovery period in all groups. Thereafter, it was slowly increased to the level of the before CO poisoning, but the recovery of pH of the $H_2O_2$ enema group was more delayed than that of the other groups during the recovery period. $Paco_2$ was significantly decreased after CO poisoning in all groups. Boring the recovery Period, $Paco_2$ of the room air group was completely recovered to the level of the before CO Poisoning, but that of the 100% $O_2$ inhalation group and the $H_2O_2$ enema group was not recovered until the 90 minutes of the recovery period. $Paco_2$ was slightly decreased after CO poisoning. During the recovery Period, it was markedly increased in the first 15 minutes and maintained the level above that before CO Poisoning in all groups. Furthermore $Paco_2$ of the $H_2O_2$ enema group was 102 to 107 mmHg and it was about 10 mmHg higher than that of the room air group during the recovery period. The saturation percentage of HbCO was increased up to the range of 54 to 72 percents after CO poisoning and in general it was generally diminished during the recovery period. However in the $H_2O_2$ enema group the diminution of the saturation percentage of HbCO was generally faster than that of the 100% $O_2$ inhalation group and the room air group, and its diminution in the 100% $O_2$ inhalation group was also slightly faster than that of the room air group at the relatively later time of the recovery period. In conclusion, the enema of 0.5% $H_2O_2$ solution is seems to facilitate the elimination of CO from the HbCO in the blood and increase $Paco_2$ simultaneously during the recovery period of the acute CO poisoning.

  • PDF

Electrochemical Characteristics of Anode-supported Solid Oxide Fuel Cells (연료극 지지형 고체산화물 연료전지의 전기화학적 특성)

  • Yoon Sung Pil;Han Jonghee;Nam Suk Woo;Lim Tae-Hoon;Hong Seong-Ahn;Hyun Sang-Hoon;Yoo Young-Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.2
    • /
    • pp.58-64
    • /
    • 2001
  • YSZ ($8mol\%$ yttria-stabilized zirconia)-modified LSM $(La_{0.85}Sr_{0.15}MnO_3)$ composite cathodes were fabricated by formation of YSZ film on triple phase boundary (TPB) of LSM/YSZ/gas. The YSZ coating film greatly enlarged electrochemical reaction sites from the increase of additional TPB. The composite cathode was formed on thin YSZ electrolyte (about 30 Um thickness) supported on an anode and then I-V characterization and AC impedance analyses were performed at temperature between $700^{\circ}C\;and\;800^{\circ}C$. As results of the impedance analysis on the cell at $800^{\circ}C$ with humidified hydrogen as the fuel and air as the oxidant, R1 around the frequency of 1000 Hz represents the anode Polarization. R2 around the frequency of 100Hz indicates the cathode polarization, and R3 below the frequency of 10 Hz is the resistance of gas phase diffusion through the anode. The cell with the composite cathode produced power density of $0.55\;W/cm^2\;and\;1W/cm^2$ at air and oxygen atmosphere, respectively. The I-V curve could be divided into two parts showing distinctive behavior. At low current density region (part I) the performance decreased steeply and at high current density region (part II) the performance decreased gradually. At the part I the performance decrease was especially resulted from the large cathode polarization, while at the part H the performance decrease related to the electrolyte polarization.

Air Pollution and Its Effects on E.N.T. Field (대기오염과 이비인후과)

  • 박인용
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1972.03a
    • /
    • pp.6-7
    • /
    • 1972
  • The air pollutants can be classified into the irritant gas and the asphixation gas, and the irritant gas is closely related to the otorhinolaryngological diseases. The common irritant gases are nitrogen oxides, sulfur oxides, hydrogen carbon compounds, and the potent and irritating PAN (peroxy acyl nitrate) which is secondarily liberated from photosynthesis. Those gases adhers to the mucous membrane to result in ulceration and secondary infection due to their potent oxidizing power. 1. Sulfur dioxide gas Sulfur dioxide gas has the typical characteristics of the air pollutants. Because of its high solubility it gets easily absorbed in the respiratory tract, when the symptoms and signs by irritation become manifested initially and later the resistance in the respiratory tract brings central about pulmonary edema and respiratory paralysis of origin. Chronic exposure to the gas leads to rhinitis, pharyngitis, laryngitis, and olfactory or gustatory disturbances. 2. Carbon monoxide Toxicity of carbon monoxide is due to its deprivation of the oxygen carrying capacity of the hemoglobin. The degree of the carbon monoxide intoxication varies according to its concentration and the duration of inhalation. It starts with headache, vertigo, nausea, vomiting and tinnitus, which can progress to respiratory difficulty, muscular laxity, syncope, and coma leading to death. 3. Nitrogen dioxide Nitrogen dioxide causes respiratory disturbances by formation of methemoglobin. In acute poisoning, it can cause pulmonary congestion, pulmonary edema, bronchitis, and pneumonia due to its strong irritation on the eyes and the nose. In chronic poisoning, it causes chronic pulmonary fibrosis and pulmonary edema. 4. Ozone It has offending irritating odor, and causes dryness of na sopharyngolaryngeal mucosa, headache and depressed pulmonary function which may eventually lead to pulmonary congestion or edema. 5. Smog The most outstanding incident of the smog occurred in London from December 5 through 8, 1952, because of which the mortality of the respiratory diseases increased fourfold. The smog was thought to be due to the smoke produced by incomplete combustion and its byproduct the sulfur oxides, and the dust was thought to play the secondary role. In new sense, hazardous is the photochemical smog which is produced by combination of light energy and the hydrocarbons and oxidant in the air. The Yonsei University Institute for Environmental :pollution Research launched a project to determine the relationship between the pollution and the medical, ophthalmological and rhinopharyngological disorders. The students (469) of the "S" Technical School in the most heavily polluted area in Pusan (Uham Dong district) were compared with those (345) of "K" High School in the less polluted area. The investigated group had those with subjective symptoms twice as much as the control group, 22.6% (106) in investigated group and 11.3% (39) in the control group. Among those symptomatic students of the investigated group. There were 29 with respiratory symptoms (29%), 22 with eye symptoms (21%), 50 with stuffy nose and rhinorrhea (47%), and 5 with sore thorat (5%), which revealed that more than half the students (52%) had subjective symptoms of the rhinopharyngological aspects. Physical examination revealed that the investigated group had more number of students with signs than those of the control group by 10%, 180 (38.4%) versus 99 (28.8%). Among the preceding 180 students of the investigated group, there were 8 with eye diseases (44%), 1 with respiratory disease (0.6%), 97 with rhinitis (54%), and 74 with pharyngotonsillitis (41%) which means that 95% of them had rharygoical diseases. The preceding data revealed that the otolaryngological diseases are conspicuously outnumbered in the heavily polluted area, and that there must be very close relationship between the air pollution and the otolaryngological diseases, and the anti-pollution measure is urgently needed.

  • PDF

Hydrochemical and Isotopic Characteristics, and Origin of Noble Gas for Low-temperature Hot Spring Waters in the Honam Area (호남지역 저온형 온천수의 수리지화학적 및 안정동위원소 특성과 영족기체의 기원에 관한 연구)

  • Jeong, Chan-Ho;Hur, Hyun-Sung;Nagao, Keisuke;Kim, Kyu-Han
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.635-649
    • /
    • 2007
  • Geochemical composition, stable isotopes $({\delta}^{18}O,\;{\delta}D,\;{\delta}^{34}S)$ and noble gases(He, Ne and Ar) of nine hot spring water and three groundwater for five hot springs(Jukam, Hwasun, Dokog, Jirisan, Beunsan) from the Honam area were analyzed to investigate the hydrogeochemical characteristics and the hydrogeochemical evolution of the hot spring waters, and to interpret the source of sulfur, helium and argon dissolved in the hot spring waters. The hot spring waters show low water temperature ranging from 23.0 to $30.5^{\circ}C$ and alkaline characteristics of pH 7.67 to 9.98. Electrical conductivity of hot spring waters is $153{\sim}746{\mu}S/cm$. Groundwaters in this area were characterized by the acidic to neutral pH range$(5.85{\sim}7.21)$, the wide electrical conductivity range $(44{\sim}165{\mu}S/cm)$. The geochemical compositions of hot spring and groundwaters can be divided into three water types: (1) $Na-HCO_3$ water type, (2) Na-Cl water type and (3) $Ca-HCO_3$ water type. The hot spring water of $Ca-HCO_3$ water type in early stage have been evolved through $Ca(Na)-HCO_3$ water type into $Na-HCO_3$ type in final stage. In particular, Jurim alkaline(pH 9.98) hot spring water plotted at the end point of $Na-HCO_3$ type in the Piper diagram is likely to arrive into the final stage in geochemical evolution process. Hydrogen and oxygen isotopic data of the hot spring water samples indicate that the hot spring waters originated from the local meteoric water showing latitude and altitude effects. The ${\delta}^{34}S$ value for sulfate of the hot spring waters varies widely from 0.5 to $25.9%o$. The sulfur source of most hot spring waters in this area is igneous origin. However, The ${\delta}^{34}S$ also indicates the sulfur of JR1 hot water is originated from marine sulfur which might be derived ken ancient seawater sulfates. The $^3He/^4He\;and\;^4He/^{20}Ne$ ratios of the hot spring waters range from $0.0143{\times}10^{-6}\;to\;0.407{\times}10^{-6}\;and\;6.49{\sim}584{\times}10^{-6}$, respectively. The hot spring waters are plotted on the mixing line between air and crustal components. It means that the He gas in the hot spring waters was mainly originated from crustal sources. However, the JR1 hot spring water show a little mixing ratio of the helium gas of mantle source. The $^{40}Ar/^{36}Ar$ ratios of hot spring water are in the range from $292.3{\times}10^{-6}\;to\;304.1{\times}10^{-6}$, implying the atmospheric argon source.