DOI QR코드

DOI QR Code

Degradation of Plant Lignin with The Supercritical Ethanol and Ru/C Catalyst Combination for Lignin-oil

초임계 에탄올과 루테늄 촉매에 의한 초본 리그닌의 오일화 반응

  • Park, Jeesu (Department of Forest Sciences, CALS, Seoul National University) ;
  • Kim, Jae-Young (Department of Forest Sciences, CALS, Seoul National University) ;
  • Choi, Joon Weon (Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology)
  • 박지수 (서울대학교 농업생명과학대학 산림과학부) ;
  • 김재영 (서울대학교 농업생명과학대학 산림과학부) ;
  • 최준원 (서울대학교 국제농업기술대학원/그린바이오연구원)
  • Received : 2014.10.28
  • Accepted : 2014.12.10
  • Published : 2015.05.25

Abstract

Asian lignin was efficiently depolymerized with supercritical ethanol and Ru/C catalyst at various reaction temperature (250, 300, and $350^{\circ}C$). Lignin-oil was subjected to several physicochemical analyses such as GC/MS, GPC, and elemental analysis. With increasing reaction temperature, the yield of lignin-oil decreased from 89.5 wt% to 32.1 wt%. The average molecular weight (Mw) and polydispersity index (Mw/Mn) of lignin-oil obtained from $350^{\circ}C$ (547Da, 1.49) dramatically decreased compare to those of original asian lignin (3698Da, 2.68). This is a clear evidence of lignin depolymerization. GC/MS analysis revealed that the yield of monomeric phenols involving guaiacol, 4-ethyl-phenol, 4-methylguaiacol, syringol, and 4-methysyringol increased with increasing reaction temperature, and these were mostly produced with applying hydrogen gas and Ru/C catalyst (76.1 mg/g of lignin). Meanwhile, the carbon content of lignin-oil increased whereas the oxygen content decreased with increasing reaction temperature, suggesting that hydrodeoxygenation was significantly enhanced at higher temperature.

본 연구에서는 초임계 에탄올 및 Ru/C 촉매를 이용하여 초본류 바이오매스 유래 아시안 리그닌을 효과적으로 분해하였으며, 분해 생성된 리그닌오일의 물리화학적 특성을 다양한 분석방법을 이용하여 조사하였다. 리그닌오일의 수율은 반응온도가 $250^{\circ}C$에서 $350^{\circ}C$로 상승함에 따라 89.5 wt%에서 32.1 wt%로 감소하는 경향을 보였지만 분자량 및 다분산지수는 $350^{\circ}C$ 조건에서 아시안 리그닌(3698Da, 2.68) 대비 각각 85%, 44% 감소하여 효과적인 탈중합 반응이 진행되었음을 확인할 수 있었다. 리그닌오일의 GC/MS 분석 결과 guaiacol, 4-ethylphenol, 4-methylguaiacol, syringol, and 4-methysyringol 등 단량체 수준의 페놀화합물은 반응온도가 증가할수록 24.1 mg/g of lignin ($250^{\circ}C$)에서 64.8 mg/g of lignin ($350^{\circ}C$)으로 증가하였으며, 반응기 내부에 수소가스와 촉매(Ru/C)를 첨가하였을 때 최대 76.1 mg/g of lignin 수준까지 향상되는 것을 확인할 수 있었다. 한편 리그닌오일의 원소분석 결과 반응온도가 증가함에 따라 탄소함량은 증가한 반면 산소함량은 점차 감소하였으며, 이를 통해 아시안 리그닌 탈중합 공정 중 수첨탈산소반응 및 수소첨가반응이 진행됨을 간접적으로 확인할 수 있었다.

Keywords

References

  1. Amen-Chen, C., Pakdel, H., Roy, C. 2001. Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresource Techonology 79: 277-299. https://doi.org/10.1016/S0960-8524(00)00180-2
  2. Brands, D., Poels, E., Dimian, A., Bliek, A. 2002. Solvent-based fatty alcohol synthesis using supercritical butane. Thermodynamic analysis. American Oil Chemists' Society 79: 75-83. https://doi.org/10.1007/s11746-002-0438-1
  3. Brunow, G., Lundquist, K. 2010. Functional groups and bonding patterns in lignin (including the lignin-carbohydrate complexes). CRC Press, Boca Raton, USA.
  4. Dence, C.W. 1992. The determination of lignin. Methods in lignin chemistry. Springer Berlin Heidelberg 33-61.
  5. Fan, M., Jiang, P., Bi, P., Deng, S., Yan, L., Zhai, Q., Wang, T., Li, Q. 2013. Directional synthesis of ethylbenzene through catalytic transformation of lignin. Bioresource Technology 143: 59-67. https://doi.org/10.1016/j.biortech.2013.05.097
  6. Fang, Z., Sato, T., Smith Jr, R.L., Inomata, H., Arai, K., Kozinski, J.A. 2008. Reaction chemistry and phase behavior of lignin in high-temperature and supercritical water. Bioresource Technology 99: 3424-3430. https://doi.org/10.1016/j.biortech.2007.08.008
  7. Gosselink, R.J.A., Teunissen, W., van Dam, J.E.G., de Jong, E., Gellerstedt, G., Scott, E.L., Sanders, J.P.M. 2012. Lignin depolymerisation in supercritical carbon dioxide/acetone/water fluid for the production of aromatic chemicals. Bioresource Technology 106: 173-177. https://doi.org/10.1016/j.biortech.2011.11.121
  8. Gutierrez, A., Kaila, R., Honkela, M., Slioor, R., Krause, A. 2009. Hydrodeoxygenation of guaiacol on noble metal catalysts. Catalysis Today 147: 239-246. https://doi.org/10.1016/j.cattod.2008.10.037
  9. Holmelid, B., Kleinert, M., Barth, T. 2012. Reactivity and reaction pathways in thermochemical treatment of selected lignin-like model compounds under hydrogen rich conditions. Journal of Analytical and Applied Pyrolysis 98(0): 37-44. https://doi.org/10.1016/j.jaap.2012.03.007
  10. Kim, S., Dale, B.E. 2004. Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26: 361-375. https://doi.org/10.1016/j.biombioe.2003.08.002
  11. Kim, J.-Y., Oh, S., Hwang, H., Cho, T.-S., Choi, I.-G., Choi, J.W. 2013. Effects of various reaction parameters on solvolytical depolymerization of lignin in sub-and supercritical ethanol. Chemosphere 93: 1755-1764. https://doi.org/10.1016/j.chemosphere.2013.06.003
  12. Kim, J.-Y., Park, J., Kim, J.K., Song, I.K., Choi, J.W. 2014. Catalytic depolymerization of lignin macromolecule to alkylated phenols over various metal catalysts in supercritical t-butanol. Journal of Analytical and Applied Pyrolysis, Accepted.
  13. Lapierre, C. 2010. Determining lignin structure by chemical degradations. Lignin and Lignins: Advanced in chemistry. Heitner C., Dimmel D., Schmidt J.A. 11. Boca Raton, FL: CRC Press, Taylor & Francis Group.
  14. Li, H., Yuan, X., Zeng, G., Tong, J., Yan, Y., Cao, H. 2009. Liquefaction of rice straw in sub-and supercritical 1, 4-dioxane-water mixture. Fuel Processing Technology 90: 657-663. https://doi.org/10.1016/j.fuproc.2008.12.003
  15. Long, J., Zhang, Q., Wang, T., Zhang, X., Xu, Y., Ma, L. 2014. An efficient and economical process for lignin depolymerization in biomass-derived solvent tetrahydrofuran. Bioresource Technology 154: 10-17. https://doi.org/10.1016/j.biortech.2013.12.020
  16. Lu F., Ralph J. 1997. Derivatization followed by reductive cleavage (DFRC method), a new method for lignin analysis: protocol for analysis of DFRC monomers. Agricultural and Food Chemistry 45(7): 2590-2592. https://doi.org/10.1021/jf970258h
  17. Pandey, M.P., Kim, C.S. 2011. Lignin Depolymerization and Conversion: A Review of Thermochemical Methods. Chemical Engineering & Technology 34(1): 29-41. https://doi.org/10.1002/ceat.201000270
  18. Regauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G., Cairney, J., Eckert, C.A., Rederick Jr., W.J., Hallett, J.P., Leak, D.J., Liotta, C.L. 2006. The path forward for biofuels and biomaterials. Science 311: 484-489. https://doi.org/10.1126/science.1114736
  19. Tan, H.T., Lee, K.T. 2012. Understanding the impact of ionic liquid pretreatment on biomass and enzymatic hydrolysis. Chemical Engineering 183: 448-458. https://doi.org/10.1016/j.cej.2011.12.086
  20. Vazquez, G., Antorrena, G., Gonzalez, J., Freire, S. 1997. The influencing of pulping conditions on the structure of acetosolv eucalyptus lignins. Wood Chemistry and Technology 17(1 and 2): 147-162. https://doi.org/10.1080/02773819708003124
  21. Yoshikawa, T., Yagi, T., Shinohara, S., Fukunaga, T., Nakasaka, Y., Tago, T., Masuda, T. 2013. Production of phenols from lignin via depolymerization and catalytic cracking. Fuel Processing Technology 108: 69-75. https://doi.org/10.1016/j.fuproc.2012.05.003
  22. Wild, De., P.J., Huijgen, W.J.J., Heeres, H.J. 2012. Pyrolysis of wheat straw-derived organosolve lignin. Journal of analytical and applied pyrolysis 93: 95-103. https://doi.org/10.1016/j.jaap.2011.10.002