References
- Amen-Chen, C., Pakdel, H., Roy, C. 2001. Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresource Techonology 79: 277-299. https://doi.org/10.1016/S0960-8524(00)00180-2
- Brands, D., Poels, E., Dimian, A., Bliek, A. 2002. Solvent-based fatty alcohol synthesis using supercritical butane. Thermodynamic analysis. American Oil Chemists' Society 79: 75-83. https://doi.org/10.1007/s11746-002-0438-1
- Brunow, G., Lundquist, K. 2010. Functional groups and bonding patterns in lignin (including the lignin-carbohydrate complexes). CRC Press, Boca Raton, USA.
- Dence, C.W. 1992. The determination of lignin. Methods in lignin chemistry. Springer Berlin Heidelberg 33-61.
- Fan, M., Jiang, P., Bi, P., Deng, S., Yan, L., Zhai, Q., Wang, T., Li, Q. 2013. Directional synthesis of ethylbenzene through catalytic transformation of lignin. Bioresource Technology 143: 59-67. https://doi.org/10.1016/j.biortech.2013.05.097
- Fang, Z., Sato, T., Smith Jr, R.L., Inomata, H., Arai, K., Kozinski, J.A. 2008. Reaction chemistry and phase behavior of lignin in high-temperature and supercritical water. Bioresource Technology 99: 3424-3430. https://doi.org/10.1016/j.biortech.2007.08.008
- Gosselink, R.J.A., Teunissen, W., van Dam, J.E.G., de Jong, E., Gellerstedt, G., Scott, E.L., Sanders, J.P.M. 2012. Lignin depolymerisation in supercritical carbon dioxide/acetone/water fluid for the production of aromatic chemicals. Bioresource Technology 106: 173-177. https://doi.org/10.1016/j.biortech.2011.11.121
- Gutierrez, A., Kaila, R., Honkela, M., Slioor, R., Krause, A. 2009. Hydrodeoxygenation of guaiacol on noble metal catalysts. Catalysis Today 147: 239-246. https://doi.org/10.1016/j.cattod.2008.10.037
- Holmelid, B., Kleinert, M., Barth, T. 2012. Reactivity and reaction pathways in thermochemical treatment of selected lignin-like model compounds under hydrogen rich conditions. Journal of Analytical and Applied Pyrolysis 98(0): 37-44. https://doi.org/10.1016/j.jaap.2012.03.007
- Kim, S., Dale, B.E. 2004. Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26: 361-375. https://doi.org/10.1016/j.biombioe.2003.08.002
- Kim, J.-Y., Oh, S., Hwang, H., Cho, T.-S., Choi, I.-G., Choi, J.W. 2013. Effects of various reaction parameters on solvolytical depolymerization of lignin in sub-and supercritical ethanol. Chemosphere 93: 1755-1764. https://doi.org/10.1016/j.chemosphere.2013.06.003
- Kim, J.-Y., Park, J., Kim, J.K., Song, I.K., Choi, J.W. 2014. Catalytic depolymerization of lignin macromolecule to alkylated phenols over various metal catalysts in supercritical t-butanol. Journal of Analytical and Applied Pyrolysis, Accepted.
- Lapierre, C. 2010. Determining lignin structure by chemical degradations. Lignin and Lignins: Advanced in chemistry. Heitner C., Dimmel D., Schmidt J.A. 11. Boca Raton, FL: CRC Press, Taylor & Francis Group.
- Li, H., Yuan, X., Zeng, G., Tong, J., Yan, Y., Cao, H. 2009. Liquefaction of rice straw in sub-and supercritical 1, 4-dioxane-water mixture. Fuel Processing Technology 90: 657-663. https://doi.org/10.1016/j.fuproc.2008.12.003
- Long, J., Zhang, Q., Wang, T., Zhang, X., Xu, Y., Ma, L. 2014. An efficient and economical process for lignin depolymerization in biomass-derived solvent tetrahydrofuran. Bioresource Technology 154: 10-17. https://doi.org/10.1016/j.biortech.2013.12.020
- Lu F., Ralph J. 1997. Derivatization followed by reductive cleavage (DFRC method), a new method for lignin analysis: protocol for analysis of DFRC monomers. Agricultural and Food Chemistry 45(7): 2590-2592. https://doi.org/10.1021/jf970258h
- Pandey, M.P., Kim, C.S. 2011. Lignin Depolymerization and Conversion: A Review of Thermochemical Methods. Chemical Engineering & Technology 34(1): 29-41. https://doi.org/10.1002/ceat.201000270
- Regauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G., Cairney, J., Eckert, C.A., Rederick Jr., W.J., Hallett, J.P., Leak, D.J., Liotta, C.L. 2006. The path forward for biofuels and biomaterials. Science 311: 484-489. https://doi.org/10.1126/science.1114736
- Tan, H.T., Lee, K.T. 2012. Understanding the impact of ionic liquid pretreatment on biomass and enzymatic hydrolysis. Chemical Engineering 183: 448-458. https://doi.org/10.1016/j.cej.2011.12.086
- Vazquez, G., Antorrena, G., Gonzalez, J., Freire, S. 1997. The influencing of pulping conditions on the structure of acetosolv eucalyptus lignins. Wood Chemistry and Technology 17(1 and 2): 147-162. https://doi.org/10.1080/02773819708003124
- Yoshikawa, T., Yagi, T., Shinohara, S., Fukunaga, T., Nakasaka, Y., Tago, T., Masuda, T. 2013. Production of phenols from lignin via depolymerization and catalytic cracking. Fuel Processing Technology 108: 69-75. https://doi.org/10.1016/j.fuproc.2012.05.003
- Wild, De., P.J., Huijgen, W.J.J., Heeres, H.J. 2012. Pyrolysis of wheat straw-derived organosolve lignin. Journal of analytical and applied pyrolysis 93: 95-103. https://doi.org/10.1016/j.jaap.2011.10.002