• Title/Summary/Keyword: Hydrogen production cost

Search Result 129, Processing Time 0.025 seconds

Optimization of fabrication and process conditions for highly uniform and durable cobalt oxide electrodes for anion exchange membrane water electrolysis (음이온 교환막 수전해 적용을 위한 고균일 고내구 코발트 산화물 전극의 제조 및 공정 조건 최적화)

  • Hoseok Lee;Shin-Woo Myeong;Jun-young Park;Eon-ju Park;Sungjun Heo;Nam-In Kim;Jae-hun Lee;Jae-hun Lee;Jae-Yeop Jeong;Song Jin;Jooyoung Lee;Sang Ho Lee;Chiho Kim;Sung Mook Choi
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.412-419
    • /
    • 2023
  • Anion exchange membrane electrolysis is considered a promising next-generation hydrogen production technology that can produce low-cost, clean hydrogen. However, anion exchange membrane electrolysis technology is in its early stages of development and requires intensive research on electrodes, which are a key component of the catalyst-system interface. In this study, we optimized the pressure conditions of the hot-pressing process to manufacture cobalt oxide electrodes for the development of a high uniformity and high adhesion electrode production process for the oxygen evolution reaction. As the pressure increased, the reduction of pores within the electrode and increased densification of catalytic particles led to the formation of a uniform electrode surface. The cobalt oxide electrode optimized for pressure conditions exhibited improved catalytic activity and durability. The optimized electrode was used as the anode in an AEMWE single cell, exhibiting a current density of 1.53 A cm-2 at a cell voltage of 1.85 V. In a durability test conducted for 100 h at a constant current density of 500 mA cm-2, it demonstrated excellent durability with a low degradation rate of 15.9 mV kh-1, maintaining 99% of its initial performance.

VHTR Construction Ripple Effect Analysis Using Inter-Industry Tables (산업연관분석을 통한 초고온가스로 건설 파급효과 분석)

  • Lee, Tae-Hoon;Lee, Ki-Young
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.39-44
    • /
    • 2015
  • The VHTR (Very High Temperature gas-cooled nuclear Reactor) has been considered as a major heat source and the most safe generation IV type reactor for mass hydrogen production to prepare for the hydrogen economy era. The VHTR satisfies goals for the GIF (Generation IV International Forum) policy such as sustainablility, economics, reliability and proliferation resistance and physical protection, and safety. As a part of a VHTR economic analysis, we have studied the VHTR construction cost and operation and maintenance cost. However, it is somewhat difficult to expect the ripple effect on the whole industry due to the lack of information about Inter-industries relationship. In many case, the ripple effect are based on experts' knowledge or uncertain qualitative assumptions. As a result, we propose quantitative analysis techniques for ripple effects such as the production inducement effect, added value inducement effect, and employment inducement effect for VHTR 600MWt${\times}$4 modules construction and operation ripple effect based on NOAK (Nth Of A Kind). Because inducement effect values have been published annually, we predict inducement effect's relation function and estimated values including production inducement effect value, added value inducement effect value, and employment inducement effect value using time series and estimated values are verified with published inducement effects' value. This paper presents a new method for the ripple effect and preliminary ripple effect consequence using a time series analysis and inter-industry table. This ripple effect analysis techniques can be applied to effect expectation analysis as well as other type reactor's ripple effect analysis including VHTR for process heat.

Fabrication and Evaluations of Hydrogenation Properties of TiH2/TiH2-Al agents on Aluminum Foam Alloy (알루미늄 발포용 TiH2/TiH2-Al의 제조와 수소화 특성 평가)

  • Hong, T.-W.;Cho, G.-W.;Kweon, S.-Y.;Kim, I.-H.;Lee, J.-I.;Ur, S.-C.;Lee, Y.-G.;Ryu, S.-L.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.3
    • /
    • pp.235-243
    • /
    • 2004
  • A number of potential applications of aluminum foams are being identified and renewed interest in these engineering materials is also reflected by several current research projects. One of the key issues for industrial exploitation of aluminum foams is the development of cost-effective manufacturing strategies facilitating, preferably, net shape production of foams with controlled porosity and cell size, and minimized structural imperfection. Especially, melt route to aluminum foam production based on the foaming agents offer attraction of low cost and the potential for good microstructure. The present paper is focused mainly on foaming agents of melt-foam aluminum such as $TiH_2$ or $TiH_2-Al$ mixture. For the purpose of economical manufacturing, we are proposed to hydrogen induced mechanical alloying (HIMA) process. Thermo-physical properties of particles synthesized are compared with conventional methods. Specimens synthesized are characterized by scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), thermo- gravimetry-differential scanning calorymetry (TG-DSC), pressure-composition-isotherm. (PCI).

A Study for Correlativity of Hydrogen Production Using Artificial Luminous Intensity (인공조도를 이용한 수소발생량과의 상관성에 관한 연구)

  • Jung, You-Ra;Hong, Chang-Woo;Choi, Young-Sung;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.218-221
    • /
    • 2010
  • This paper presents energy efficiency about an electrolyser which is related with the hybrid system of solar cell and fuel cell for using the system more fully. The water electrolyser is the exact reverse of a hydrogen fuel cell; it produces gaseous hydrogen and oxygen from water. Electrolyser technology may be implemented at a variety of scales wherever there is an electricity supply to provide hydrogen and/or oxygen for virtually any requirement. Also, this paper shows optimum operating point in the electrolyser for saving cost of the electrical energy with hybrid system.

Techno-economic Analysis of Power To Gas (P2G) Process for the Development of Optimum Business Model: Part 2 Methane to Electricity Production Pathway

  • Partho Sarothi Roy;Young Don Yoo;Suhyun Kim;Chan Seung Park
    • Clean Technology
    • /
    • v.29 no.1
    • /
    • pp.53-58
    • /
    • 2023
  • This study shows the summary of the economic performance of excess electricity conversion to hydrogen as well as methane and returned conversion to electricity using a fuel cell. The methane production process has been examined in a previous study. Here, this study focuses on the conversion of methane to electricity. As a part of this study, capital expenditure (CAPEX) is estimated under various sized plants (0.3, 3, 9, and 30 MW). The study shows a method for economic optimization of electricity generation using a fuel cell. The CAPEX and operating expenditure (OPEX) as well as the feed cost are used to calculate the discounted cash flow. Then the levelized cost of returned electricity (LCORE) is estimated from the discounted cash flow. This study found the LCORE value was ¢10.2/kWh electricity when a 9 MW electricity generating fuel cell was used. A methane production plant size of 1,500 Nm3/hr, a methane production cost of $11.47/mcf, a storage cost of $1/mcf, and a fuel cell efficiency of 54% were used as a baseline. A sensitivity analysis was performed by varying the storage cost, fuel cell efficiency, and excess electricity cost by ±20%, and fuel cell efficiency was found as the most dominating parameter in terms of the LCORE sensitivity. Therefore, for the best cost-performance, fuel cell manufacturing and efficiency need to be carefully evaluated. This study provides a general guideline for cost performance comparison with LCORE.

Application of Cu-loaded One-dimensional TiO2 Nanorods for Elevated Photocatalytic Environmental Friendly Hydrogen Production

  • Kim, Dong Jin;Tonda, Surendar;Jo, Wan-Kuen
    • Journal of Environmental Science International
    • /
    • v.30 no.1
    • /
    • pp.57-67
    • /
    • 2021
  • Photocatalytic green energy H2 production utilizing inexhaustible solar energy has been considered as a potential solution to problems of energy scarcity and environmental contamination. However, the design of a cost-effective photocatalyst using simple synthesis methodology is still a grand challenge. Herein, a low-cost transition metal, Cu-loaded one-dimensional TiO2 nanorods (Cu/TNR) were fabricated using an easy-to-use synthesis methodology for significant H2 production under simulated solar light. X-ray photoelectron spectral studies and electron microscopy measurements provide evidence to support the successful formation of the Cu/TNR catalyst under our experimental conditions. UV-vis DRS studies further demonstrate that introducing Cu on the surface of TNR substantially increases light absorption in the visible range. Notably, the Cu/TNR catalyst with optimum Cu content, achieved a remarkable H2 production with a yield of 39,239 µmol/g after 3 h of solar light illumination, representing 7.4- and 27.7-fold enhancements against TNR and commercial P25, respectively. The notably improved H2 evolution activity of the target Cu/TNR catalyst was primarily attributed to its excellent separation and efficiently hampered recombination of photoexcited electron-hole pairs. The Cu/TNR catalyst is, therefore, a potential candidate for photocatalytic green energy applications.

Study on Characteristic of Methane Reforming and Production of Hydrogen using GlidArc Plasma (GlidArc 플라즈마를 이용한 메탄의 개질 특성 및 수소 생산에 관한 연구)

  • Kim, Seong-Cheon;Chun, Young-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.11
    • /
    • pp.942-948
    • /
    • 2007
  • Popular techniques for producing hydrogen by converting methane include steam reforming and catalyst reforming. However, these are high temperature and high pressure processes limited by equipment, cost and difficulty of operation. Low temperature plasma is projected to be a technique that can be used to produce high concentration hydrogen from methane. It is suitable for miniaturization and fur application in other technologies. In this research, the effect of changing each of the following variables was studied using an AC GlidArc system that was conceived by the research team: the gas components ratio, the gas flow rate, the catalyst reactor temperature and voltage. Results were obtained for methane and hydrogen yields and intermediate products. The system used in this research consisted of 3 electrodes and an AC power source. In this study, air was added fur the partial oxidation reaction of methane. The result showed that as the gas flow rate, the catalyst reactor temperature and the electric power increased, the methane conversion rate and the hydrogen concentration also increased. With $O_2/C$ ratio of 0.45, input flow rate of 4.9 l/min and power supply of 1 kW as the reference condition, the methane conversion rate, the high hydrogen selectivity and the reformer energy density were 69.2%, 32.6% and 35.2% respectively.

Properties of CB/SBR Rubber Composites Filled by Carbon Blacks Used as Catalysts for Hydrogen Production through Hydrocarbon Decomposition

  • Dai, Shuangye;Ao, Gyeou;Kim, Myung-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.392-395
    • /
    • 2006
  • In this work, the reinforcing action of carbon blacks in rubber was investigated by SEM and UTM measurements which at low a testing of the surface and mechanical properties. In order to gain an insight into the different properties between carbon blacks before and after methane/propane decomposition, various composites were prepared with SBR synthetic rubber and different carbon blacks with four loading ratios. The results were analyzed with the aim of finding suitable conditions for decomposition reaction to cut down the net cost for hydrogen production through hydrocarbon decomposition.

  • PDF

Dehydration and RDF Production of Organic Wastes with Pressurized Hydrothermal Treatment Process (증기가압형 처리공정을 이용한 유기성 폐기물의 건조처리 및 고형연료화)

  • Park, Se-Joon;Choi, Young-Chan;Choi, In-Kyu
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.5
    • /
    • pp.439-446
    • /
    • 2009
  • This paper investigates the dehydration and RDF (Refuse Derived Fuel) production of organic wastes, livestock manure and sewerage sludge with pressurized hydrothermal treatment process. The renewable technology for the organic wastes must involve short treatment time required, reusable energy source, anti-odor and viruses, low cost for the treatment, and well-fertilization. The pressurized hydrothermal treatment process promotes to evaporate moisture in the waste after being shortly treated in a reactor, which uses steam and heat supplied by an external boiler. By the pressurized steam, the cell walls of the waste break and effectively release the internal moisture. Then, the dried waste can be mixed with waste vinyls to produce RDF with a higher heating value as high as 6,700 kcal/kg.

Preliminary Economic Analysis for H2 Transportation Using Liquid Organic H2 Carrier to Enter H2 Economy Society in Korea (수소경제사회 실현을 위한 액체 유기 수소캐리어를 이용한 수소 수송 관련 예비 경제성 평가)

  • LEE, BOREUM;LEE, HYUNJUN;MOON, CHANGHWAN;MOON, SANGBONG;LIM, HANKWON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.2
    • /
    • pp.119-127
    • /
    • 2019
  • Reliable $H_2$ supply is necessary for entering a $H_2$ society. Among the various $H_2$ storage and transportation methods, liquid organic $H_2$ carrier (LOHC) is in the spotlight because of a lot of advantages compared to conventional one such as compressed $H_2$ and liquefied $H_2$. Therefore, we performed preliminary economic analysis of $H_2$ supply cost using LOHC for a $H_2$ production capacity of $300Nm^3\;h^{-1}$ employing itemized cost estimation and sensitivity analysis to evaluate economic viability of this technology in Korea.