DOI QR코드

DOI QR Code

Application of Cu-loaded One-dimensional TiO2 Nanorods for Elevated Photocatalytic Environmental Friendly Hydrogen Production

  • Kim, Dong Jin (Department of Environmental Engineering, Kyungpook National University) ;
  • Tonda, Surendar (Department of Environmental Engineering, Kyungpook National University) ;
  • Jo, Wan-Kuen (Department of Environmental Engineering, Kyungpook National University)
  • Received : 2020.11.23
  • Accepted : 2020.12.14
  • Published : 2021.01.31

Abstract

Photocatalytic green energy H2 production utilizing inexhaustible solar energy has been considered as a potential solution to problems of energy scarcity and environmental contamination. However, the design of a cost-effective photocatalyst using simple synthesis methodology is still a grand challenge. Herein, a low-cost transition metal, Cu-loaded one-dimensional TiO2 nanorods (Cu/TNR) were fabricated using an easy-to-use synthesis methodology for significant H2 production under simulated solar light. X-ray photoelectron spectral studies and electron microscopy measurements provide evidence to support the successful formation of the Cu/TNR catalyst under our experimental conditions. UV-vis DRS studies further demonstrate that introducing Cu on the surface of TNR substantially increases light absorption in the visible range. Notably, the Cu/TNR catalyst with optimum Cu content, achieved a remarkable H2 production with a yield of 39,239 µmol/g after 3 h of solar light illumination, representing 7.4- and 27.7-fold enhancements against TNR and commercial P25, respectively. The notably improved H2 evolution activity of the target Cu/TNR catalyst was primarily attributed to its excellent separation and efficiently hampered recombination of photoexcited electron-hole pairs. The Cu/TNR catalyst is, therefore, a potential candidate for photocatalytic green energy applications.

Keywords

References

  1. Deng, Y., Li, S., Li, X., Wang, R., Li, X., 2019, Green low-temperature-solution-processed in situ HI modified TiO2/SnO2 bilayer for efficient and stable planar perovskite solar cells build at ambient air conditions, Electrochim. Acta, 326, 134924. https://doi.org/10.1016/j.electacta.2019.134924
  2. DeSario, P. A., Pietron, J. J., Brintlinger, T. H., McEntee, M., Parker, J. F., Baturina, O., Stroud, R. M., Rolison, D. R., 2017, Oxidation-stable plasmonic copper nanoparticles in photocatalytic TiO2 nanoarchitectures, Nanoscale, 9, 11720-11729. https://doi.org/10.1039/C7NR04805J
  3. Fernandez-Arias, M., Boutinguiza, M., Del Val, J., Riveiro, A., Rodriguez, D., Arias-Gonzalez, F., Gil, J., Pou, J., 2020, Fabrication and deposition of copper and copper oxide nanoparticles by laser ablation in open air, Nanomaterials, 10, 300. https://doi.org/10.3390/nano10020300
  4. Ganguly, P., Harb, M., Cao, Z., Cavallo, L., Breen, A., Dervin, S., Dionysiou, D. D., Pillai, S. C., 2019, 2D nanomaterials for photocatalytic hydrogen production, ACS Energy Lett., 4, 1687-1709. https://doi.org/10.1021/acsenergylett.9b00940
  5. Gao, C., Wei, T., Zhang, Y., Song, X., Huan, Y., Liu, H., Zhao, M., Yu, J., Chen, X., 2019, A Photoresponsive rutile TiO2 Heterojunction with enhanced electron-hole separation for high-performance hydrogen evolution, Adv. Mater., 31, 1806596. https://doi.org/10.1002/adma.201806596
  6. Hu, Q., Li, G., Lan, H., Li, J., Hu, B., Guo, W., Huang, J., Huang, X., 2019, Facile coengineering of oxygen defects and highly active {110} facets in TiO2 nanorods for efficient water splitting, Cryst. Growth Des., 19, 1680-1688. https://doi.org/10.1021/acs.cgd.8b01609
  7. Jiang, X., Manawan, M., Feng, T., Qian, R., Zhao, T., Zhou, G., Kong, F., Wang, Q., Dai, S., Pan, J. H., 2018a. Anatase and rutile in evonik aeroxide P25: Heterojunctioned or individual nanoparticles?, Catal. Today, 300, 12-17. https://doi.org/10.1016/j.cattod.2017.06.010
  8. Jiang, Y., Ning, H., Tian, C., Jiang, B., Li, Q., Yan, H., Zhang, X., Wang, J., Jing, L., Fu, H., 2018b, Single-crystal TiO2 nanorods assembly for efficient and stable cocatalyst-free photocatalytic hydrogen evolution, Appl. Catal. B, 229, 1-7. https://doi.org/10.1016/j.apcatb.2018.01.079
  9. Jin, Y. J., Jo, W. K., 2018, Upgraded organic vapor treatment and hydrogen generation using low-cost metal/1D black titania nanocomposites under simulated solar irradiation, J. Ind. Eng. Chem., 66, 318-324. https://doi.org/10.1016/j.jiec.2018.05.046
  10. Jo, W. K., Kim, Y. G., Tonda, S., 2018b, Hierarchical flower-like NiAl-layered double hydroxide microspheres encapsulated with black Cu-doped TiO2 nanoparticles: Highly efficient visible-light-driven composite photocatalysts for environmental remediation., J. Hazard. Mater, 357, 19-29. https://doi.org/10.1016/j.jhazmat.2018.05.038
  11. Jo, W. K., Kumar, S., Tonda, S., 2019, N-doped C dot/CoAl-layered double hydroxide/g-C3N4 hybrid composites for efficient and selective solar-driven conversion of CO2 into CH4, Compos. Part B. Eng., 176, 107212. https://doi.org/10.1016/j.compositesb.2019.107212
  12. Jo, W. K., Kumar, S., Yadav, P., Tonda, S., 2018a, In situ phase transformation synthesis of unique Janus Ag2O/Ag2CO3 heterojunction photocatalyst with improved photocatalytic properties, Appl. Surf. Sci., 445, 555-562. https://doi.org/10.1016/j.apsusc.2018.03.194
  13. Jo, W. K., Moru, S., Tonda, S., 2020, Magnetically responsive SnFe2O4/g-C3N4 hybrid photocatalysts with remarkable visible-light-induced performance for degradation of environmentally hazardous substances and sustainable hydrogen production, Appl. Surf. Sci., 506, 144939. https://doi.org/10.1016/j.apsusc.2019.144939
  14. Jo, W. K., Tonda, S., 2019, Novel CoAl-LDH/g-C3N4/RGO ternary heterojunction with notable 2D/2D/2D configuration for highly efficient visible-light-induced photocatalytic elimination of dye and antibiotic pollutants, J. Hazard. Mater., 368, 778-787. https://doi.org/10.1016/j.jhazmat.2019.01.114
  15. Kadi, M. W., Mohamed, R. M., Ismail, A. A., 2020, Uniform dispersion of CuO nanoparticles on mesoporous TiO2 networks promotes visible light photocatalysis, Ceram. Int., 46, 8819-8826. https://doi.org/10.1016/j.ceramint.2019.12.124
  16. Khatun, N., Tiwari, S., Lal, J., Tseng, C. M., Liu, S. W., Biring, S., Sen, S., 2018, Stabilization of anatase phase by uncompensated Ga-V co-doping in TiO2: A structural phase transition, grain growth and optical property study, Ceram. Int., 44, 22445-22455. https://doi.org/10.1016/j.ceramint.2018.09.012
  17. Kim, D. J., Jo, W. K., 2018, Mitigation of harmful indoor organic vapors using plug-flow unit coated with 2D g-C3N4 and metallic Cu dual-incorporated 1D titania heterostructure. Chemosphere 202, 184-190. https://doi.org/10.1016/j.chemosphere.2018.03.089
  18. Kim, D. J., Jo, W. K., 2019, Sustainable treatment of harmful dyeing industry pollutants using SrZnTiO3/g-C3N4 heterostructure with a light source-dependent charge transfer mechanism, Appl. Catal. B, 242, 171-177. https://doi.org/10.1016/j.apcatb.2018.10.001
  19. Koltsakidou, A., Antonopoulou, M., Epsilonvgenidou, E., Konstantinou, I., Giannakas, A. E., Papadaki, M., Bikiaris, D., Lambropoulou, D. A., 2017, Photocatalytical removal of fluorouracil using TiO2-P25 and N/S doped TiO2 catalysts: A kinetic and mechanistic study, Sci. Total Environ., 578, 257-267. https://doi.org/10.1016/j.scitotenv.2016.08.208
  20. Kumaravel, V., Mathew, S., Bartlett, J., Pillai, S. C., 2019, Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances, Appl. Catal. B, 244, 1021-1064. https://doi.org/10.1016/j.apcatb.2018.11.080
  21. Lee, B. H., Park, S., Kim, M., Sinha, A. K., Lee, S. C., Jung, E., Chang, W. J., Lee, K. S., Kim, J. H., Cho, S. P., Kim, H., Nam, K. T., Hyeon, T., 2019, Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts. Nat. Mater., 18(6), 620-626. https://doi.org/10.1038/s41563-019-0344-1
  22. Li, G., Huang, J., Deng, Z., Chen, J., Huang, Q., Liu, Z., Guo, W., Cao, R., 2019a, Highly active photocatalyst of CuOx modified TiO2 arrays for hydrogen generation, Cryst. Growth Des., 19, 5784-5790. https://doi.org/10.1021/acs.cgd.9b00797
  23. Li, Q., Zhao, T., Li, M., Li, W., Yang, B., Qin, D., Lv, K., Wang, X., Wu, L., Wu, X., Sun, J., 2019b, One-step construction of Pickering emulsion via commercial TiO2 nanoparticles for photocatalytic dye degradation. Appl. Catal. B, 249, 1-8. https://doi.org/10.1016/j.apcatb.2019.02.057
  24. Liu, Y., Zhang, B., Luo, L., Chen, X., Wang, Z., Wu, E., Su, D., Huang, W., 2015, TiO2 /Cu2O Core/Ultrathin Shell Nanorods as Efficient and Stable Photocatalysts for Water Reduction. Angew. Chem. Int. Ed., 54, 15260-15265. https://doi.org/10.1002/anie.201509115
  25. Park, J., Lim, J., Park, Y., Han, D. S., Shon, H. K., Hoffmann, M. R., Park, H., 2020, In situ-generated reactive oxygen species in precharged titania and tungsten trioxide composite catalyst membrane filters: Application to as(III) oxidation in the absence of irradiation, Environ. Sci. Technol., 54, 9601-9608. https://doi.org/10.1021/acs.est.0c01550
  26. Peng, C., Wei, P., Li, X., Liu, Y., Cao, Y., Wang, H., Yu, H., Peng, F., Zhang, L., Zhang, B., Lv, K., 2018, High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide, Nano Energy, 53, 97-107. https://doi.org/10.1016/j.nanoen.2018.08.040
  27. Rodriguez-Aguado, E., Infantes-Molina, A., Talon, A., Storaro, L., Leon-Reina, L., Rodriguez-Castellon, E., Moretti, E., 2019, Au nanoparticles supported on nanorod-like TiO2 as catalysts in the CO-PROX reaction under dark and light irradiation: Effect of acidic and alkaline synthesis conditions, Int. J. Hydrog. Energy, 44, 923-936. https://doi.org/10.1016/j.ijhydene.2018.11.050
  28. Seetharaman, A., Sivasubramanian, D., Gandhiraj, V., Soma, V. R., 2017, Tunable manosecond and femtosecond nonlinear optical properties of C-N-S-Doped TiO2 nanoparticles, J. Phys. Chem. C, 121, 24192-24205. https://doi.org/10.1021/acs.jpcc.7b08778
  29. Sharma, A., Lee, B. K., 2017, Photocatalytic reduction of carbon dioxide to methanol using nickel-loaded TiO2 supported on activated carbon fiber, Catal. Today, 298, 158-167. https://doi.org/10.1016/j.cattod.2017.05.003
  30. Singh, R., Dutta, S., 2018, A Review on H2 production through photocatalytic reactions using TiO2/TiO2-assisted catalysts, Fuel, 220, 607-620. https://doi.org/10.1016/j.fuel.2018.02.068
  31. Sorcar, S., Hwang, Y., Lee, J., Kim, H., Grimes, K. M., Grimes, C. A., Jung, J. W., Cho, C. H., Majima, T., Hoffmann, M. R., In, S. I., 2019, CO2, water, and sunlight to hydrocarbon fuels: a sustained sunlight to fuel (Joule-to-Joule) photoconversion efficiency of 1%, Energy Environ. Sci., 12, 2685-2696. https://doi.org/10.1039/c9ee00734b
  32. Sorcar, S., Thompson, J., Hwang, Y., Park, Y. H., Majima, T., Grimes, C. A., Durrant, J. R., In, S. I., 2018, High-rate solar-light photoconversion of CO2 to fuel: controllable transformation from C1 to C2 products, Energy Environ. Sci., 11, 3183-3193. https://doi.org/10.1039/c8ee00983j
  33. Tian, H., Zhang, X. L., Scott, J., Ng, C., Amal, R., 2014, TiO2-supported copper nanoparticles prepared via ion exchange for photocatalytic hydrogen production, J. Mater. Chem. A, 2, 6432-6438. https://doi.org/10.1039/c3ta15254e
  34. Wang, X., Xia, R., Muhire, E., Jiang, S., Huo, X., Gao, M., 2018, Highly enhanced photocatalytic performance of TiO2 nanosheets through constructing TiO2/TiO2 quantum dots homojunction, Appl. Surf. Sci., 459, 9-15. https://doi.org/10.1016/j.apsusc.2018.06.293
  35. Wei, T., Zhu, Y., Wu, Y., An, X., Liu, L. M., 2019, Effect of single-atom cocatalysts on the activity of faceted TiO2 photocatalysts, Langmuir, 35, 391-397. https://doi.org/10.1021/acs.langmuir.8b03488
  36. Xiao, S., Liu, P., Zhu, W., Li, G., Zhang, D., Li, H., 2015, Copper nanowires: A Substitute for noble metals to enhance photocatalytic H2 generation, Nano Lett., 15, 4853-4858. https://doi.org/10.1021/acs.nanolett.5b00082
  37. Xu, L., Li, J., Sun, H., Guo, X., Xu, J., Zhang, H., Zhang, X., 2019, In situ growth of Cu2O/CuO nanosheets on Cu coating carbon cloths as a binder-free electrode for asymmetric supercapacitors, Front. Chem., 7, 420. https://doi.org/10.3389/fchem.2019.00420
  38. Yu, J., Ran, J., 2011, Facile preparation and enhanced photocatalytic H2-production activity of Cu(OH)2 cluster modified TiO2, Energy Environ. Sci., 4, 1364. https://doi.org/10.1039/c0ee00729c
  39. Yuan, Y. J., Chen, D., Yu, Z. T., Zou, Z. G., 2018, Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production, J. Mater. Chem. A, 6, 11606-11630. https://doi.org/10.1039/C8TA00671G
  40. Zhang, J., Yu, Z., Gao, Z., Ge, H., Zhao, S., Chen, C., Chen, S., Tong, X., Wang, M., Zheng, Z., Qin, Y., 2017, Porous TiO2 nanotubes with spatially separated platinum and CoOx cocatalysts produced by atomic layer deposition for photocatalytic hydrogen production, Angew. Chem. Int. Ed., 56, 816-820. https://doi.org/10.1002/anie.201611137