Fig. 1. Supply chain of H2 using liquid organic H2 carrier (LOHC); from production to refueling station
Fig. 2. Hydrogen supply cost with difference distances using a 1 ton truck
Fig. 3. Sensitivity analysis on H2 supply cost with different distances
Fig. 4. Sensitivity analysis on H2 transportation cost with different distances
Fig. 5. Hydrogen supply cost with difference distances using a 5 ton truck
Table 1. Advantages and disadvantages of compressed H2, liquid H2, and liquid organic H2 carrier (LOHC)
Table 3. Itemized cost estimation with a distance of 100 km for H2 transportation
Table 4. Transportation cost with different distances
Table 2. Initial capital cost of H2 storage and transportation for a H2 production capacity of 300 Nm3 h-1
References
- M. Reuss, T. Grube, M. Robinius, P. Preuster, P. Wasserscheid, and D. Stolten, "Seasonal storage and alternative carriers: A flexible hydrogen supply chain model", Appl. E., Vol. 200, No. 15, 2017, pp. 290-302, doi: https://doi.org/10.1016/j.apenergy.2017.05.050.
- M. Eypasch, M. Schimpe, A. Kanwar, T. Hartmann, S. Herzog, T. Frank, and T. Hamacher, "Model-based techno-economic evaluation of an electricity storage system based on Liquid Organic Hydrogen Carriers", Appl. E., Vol. 185, No. 1, 2017, pp. 320-330, doi: https://doi.org/10.1016/j.apenergy.2016.10.068.
- C. Yang and J. Ogden, "Determining the lowest-cost hydrogen delivery mode", Int. J. Hydrogen Energy, Vol. 32, No. 2, 2007, pp. 268-286, doi: https://doi.org/10.1016/j.ijhydene.2006.05.009.
- B. Gim and W. L. Yoon, "Analysis of the economy of scale and estimation of the future hydrogen production costs at on-site hydrogen refueling stations in Korea", Int. J. Hydrogen Energy, Vol. 37, No. 24, 2012, pp. 19138-19145, doi: https://doi.org/10.1016/j.ijhydene.2012.09.163.
- B. Lee, H. Chae, N. H. Choi, C. Moon, S. Moon, and H. Lim, "Economic evaluation with sensitivity and profitability analysis for hydrogen production from water electrolysis in Korea", Int. J. Hydrogen Energy, Vol. 42, No. 10, 2017, pp. 6462-6471, doi: https://doi.org/10.1016/j.ijhydene.2016.12.153.
-
B. Lee, J. Heo, S. Kim, C. Sung, C. Moon, S. Moon, and H. Lim, "Economic feasibility studies of high pressure PEM water electrolysis for distributed
$H_2$ refueling stations", Energ. Convers. Manage., Vol. 162, No. 15, 2018, pp. 139-144, doi: https://doi.org/10.1016/j.enconman.2018.02.041. - R. Turton, R. C. Bailie, W. B. Whiting, J. A. Shaeiwitz, and D. Bhattacharyya, "Analysis, Synthesis, and Design of Chemical Processes", 4th edition, USA, Pearson, 2013. Retrieved from https://books.google.co.kr/books?hl=ko&lr=&id=kWXyhVXztZ8C&oi=fnd&pg=PT3&dq=R.+Turton,+R.+C.+Bailie,+W.+B.+Whiting,+J.+A.+Shaeiwitz,+D.+Bhattacharyya,+%E2%80%9CAnalysis,+Synthesis,+and+Design+of+Chemical+Processes&ots=pZnVsDsNzD&sig=KVoJv1IZ0YEekiASC-tcFSkRqu8#v=onepage&q&f=false.
- J. H. Kim, G. E. Kim, and S. H. Yoo, "A valuation of the restoration of Hwangnyongsa temple in South Korea", Sustainability, Vol. 10, No. 2, 2018, pp. 369-375, doi: https://doi.org/10.3390/su10020369.
- J. J. Brey, A. F. Carazo, and R. Brey, "Exploring the marketability of fuel cell electric vehicles in terms of infrastructure and hydrogen costs in Spain", Renew. Sus. E. Rev., Vol. 82, 2018, pp. 2893-2899, doi: https://doi.org/10.1016/j.rser.2017.10.042.
-
B. Lee, J. Heo, S. Kim, C. H. Kim, S. K. Ryi, and H. Lim, "Integrated techno-economic analysis under uncertainty of glycerol steam reforming for
$H_2$ production at distributed$H_2$ refueling stations", Energ. Convers. Manage., Vol. 180, No. 15, 2019, pp. 250-257, doi: https://doi.org/10.1016/j.enconman.2018.10.070. -
H2KOREA, "
$H_2$ refueling station", Korea. Retrieved from http://h2korea.or.kr/sub/sub02_04.php.