DOI QR코드

DOI QR Code

Preliminary Economic Analysis for H2 Transportation Using Liquid Organic H2 Carrier to Enter H2 Economy Society in Korea

수소경제사회 실현을 위한 액체 유기 수소캐리어를 이용한 수소 수송 관련 예비 경제성 평가

  • LEE, BOREUM (School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • LEE, HYUNJUN (School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • MOON, CHANGHWAN (Elchemtech Co. Ltd) ;
  • MOON, SANGBONG (Elchemtech Co. Ltd) ;
  • LIM, HANKWON (School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST))
  • 이보름 (울산과학기술원 에너지 및 화학공학부) ;
  • 이현준 (울산과학기술원 에너지 및 화학공학부) ;
  • 문창환 ((주)엘켐텍) ;
  • 문상봉 ((주)엘켐텍) ;
  • 임한권 (울산과학기술원 에너지 및 화학공학부)
  • Received : 2019.02.08
  • Accepted : 2019.04.30
  • Published : 2019.04.30

Abstract

Reliable $H_2$ supply is necessary for entering a $H_2$ society. Among the various $H_2$ storage and transportation methods, liquid organic $H_2$ carrier (LOHC) is in the spotlight because of a lot of advantages compared to conventional one such as compressed $H_2$ and liquefied $H_2$. Therefore, we performed preliminary economic analysis of $H_2$ supply cost using LOHC for a $H_2$ production capacity of $300Nm^3\;h^{-1}$ employing itemized cost estimation and sensitivity analysis to evaluate economic viability of this technology in Korea.

Keywords

SSONB2_2019_v30n2_119_f0001.png 이미지

Fig. 1. Supply chain of H2 using liquid organic H2 carrier (LOHC); from production to refueling station

SSONB2_2019_v30n2_119_f0002.png 이미지

Fig. 2. Hydrogen supply cost with difference distances using a 1 ton truck

SSONB2_2019_v30n2_119_f0003.png 이미지

Fig. 3. Sensitivity analysis on H2 supply cost with different distances

SSONB2_2019_v30n2_119_f0004.png 이미지

Fig. 4. Sensitivity analysis on H2 transportation cost with different distances

SSONB2_2019_v30n2_119_f0005.png 이미지

Fig. 5. Hydrogen supply cost with difference distances using a 5 ton truck

Table 1. Advantages and disadvantages of compressed H2, liquid H2, and liquid organic H2 carrier (LOHC)

SSONB2_2019_v30n2_119_t0001.png 이미지

Table 3. Itemized cost estimation with a distance of 100 km for H2 transportation

SSONB2_2019_v30n2_119_t0003.png 이미지

Table 4. Transportation cost with different distances

SSONB2_2019_v30n2_119_t0004.png 이미지

Table 2. Initial capital cost of H2 storage and transportation for a H2 production capacity of 300 Nm3 h-1

SSONB2_2019_v30n2_119_t0005.png 이미지

References

  1. M. Reuss, T. Grube, M. Robinius, P. Preuster, P. Wasserscheid, and D. Stolten, "Seasonal storage and alternative carriers: A flexible hydrogen supply chain model", Appl. E., Vol. 200, No. 15, 2017, pp. 290-302, doi: https://doi.org/10.1016/j.apenergy.2017.05.050.
  2. M. Eypasch, M. Schimpe, A. Kanwar, T. Hartmann, S. Herzog, T. Frank, and T. Hamacher, "Model-based techno-economic evaluation of an electricity storage system based on Liquid Organic Hydrogen Carriers", Appl. E., Vol. 185, No. 1, 2017, pp. 320-330, doi: https://doi.org/10.1016/j.apenergy.2016.10.068.
  3. C. Yang and J. Ogden, "Determining the lowest-cost hydrogen delivery mode", Int. J. Hydrogen Energy, Vol. 32, No. 2, 2007, pp. 268-286, doi: https://doi.org/10.1016/j.ijhydene.2006.05.009.
  4. B. Gim and W. L. Yoon, "Analysis of the economy of scale and estimation of the future hydrogen production costs at on-site hydrogen refueling stations in Korea", Int. J. Hydrogen Energy, Vol. 37, No. 24, 2012, pp. 19138-19145, doi: https://doi.org/10.1016/j.ijhydene.2012.09.163.
  5. B. Lee, H. Chae, N. H. Choi, C. Moon, S. Moon, and H. Lim, "Economic evaluation with sensitivity and profitability analysis for hydrogen production from water electrolysis in Korea", Int. J. Hydrogen Energy, Vol. 42, No. 10, 2017, pp. 6462-6471, doi: https://doi.org/10.1016/j.ijhydene.2016.12.153.
  6. B. Lee, J. Heo, S. Kim, C. Sung, C. Moon, S. Moon, and H. Lim, "Economic feasibility studies of high pressure PEM water electrolysis for distributed $H_2$ refueling stations", Energ. Convers. Manage., Vol. 162, No. 15, 2018, pp. 139-144, doi: https://doi.org/10.1016/j.enconman.2018.02.041.
  7. R. Turton, R. C. Bailie, W. B. Whiting, J. A. Shaeiwitz, and D. Bhattacharyya, "Analysis, Synthesis, and Design of Chemical Processes", 4th edition, USA, Pearson, 2013. Retrieved from https://books.google.co.kr/books?hl=ko&lr=&id=kWXyhVXztZ8C&oi=fnd&pg=PT3&dq=R.+Turton,+R.+C.+Bailie,+W.+B.+Whiting,+J.+A.+Shaeiwitz,+D.+Bhattacharyya,+%E2%80%9CAnalysis,+Synthesis,+and+Design+of+Chemical+Processes&ots=pZnVsDsNzD&sig=KVoJv1IZ0YEekiASC-tcFSkRqu8#v=onepage&q&f=false.
  8. J. H. Kim, G. E. Kim, and S. H. Yoo, "A valuation of the restoration of Hwangnyongsa temple in South Korea", Sustainability, Vol. 10, No. 2, 2018, pp. 369-375, doi: https://doi.org/10.3390/su10020369.
  9. J. J. Brey, A. F. Carazo, and R. Brey, "Exploring the marketability of fuel cell electric vehicles in terms of infrastructure and hydrogen costs in Spain", Renew. Sus. E. Rev., Vol. 82, 2018, pp. 2893-2899, doi: https://doi.org/10.1016/j.rser.2017.10.042.
  10. B. Lee, J. Heo, S. Kim, C. H. Kim, S. K. Ryi, and H. Lim, "Integrated techno-economic analysis under uncertainty of glycerol steam reforming for $H_2$ production at distributed $H_2$ refueling stations", Energ. Convers. Manage., Vol. 180, No. 15, 2019, pp. 250-257, doi: https://doi.org/10.1016/j.enconman.2018.10.070.
  11. H2KOREA, "$H_2$ refueling station", Korea. Retrieved from http://h2korea.or.kr/sub/sub02_04.php.