Owing to advantages of polymeric materials for hydrogen tank liner like light-weight property and high specific strength, polymer based composites have gained much attention. Despite of many benefits, polymeric materials for fuel cell tank cause problems which is critical to applications as low gas barrier property, and poor processability when adding fillers. For these reasons, improving gas barrier property of polymer composites is required to study for expanding application fields. This work presents impermeable polymer nanocomposites by introducing thin barrier coating using layer by layer (LBL) deposition method. Also, bi-layered and quad-layered nanocomposites were fabricated and compared for identifying relationship between deposition step and gas barrier property. Reduction in gas permeability was observed without interrupting mechanical property and processability. It is discussed that proper coating conditions were suggested when different coating materials and deposition steps were applied. We investigated morphology, gas barrier property and mechanical properties of fabricated nanocomposites by FE-SEM, Oxygen permeation analyzer, UTM, respectively. In addition, we revealed the mechanism of barrier performance of LBL coating using materials which have high aspect ratio.
Transactions of the Korean Society of Automotive Engineers
/
v.25
no.2
/
pp.157-166
/
2017
The Fuel Cell Electric Vehicle(FCEV) is recently evolving into a new trend in the automobile industry due to its relatively higher efficiency and zero greenhouse gas(GHG) emission in the tailpipe, as compared to that of the conventional internal combustion engine vehicles. However, it is important to analyze the whole process of the hydrogen's life cycle(from extraction of feedstock to vehicle operation) in order to evaluate the environmental impact of introducing FCEV upon recognizing that the hydrogen fuel, which is used in the fuel cell stack, is not directly available from nature, but instead, it should be produced from naturally available resources. Among the various hydrogen production methods, ${\sim}54.1%^{8)}$ of marketed hydrogen in Korea is produced from naphtha cracking process in the petrochemical industry. Therefore, in this study, we performed a well-to-wheels(WTW) analysis on the hydrogen fuel cycle for the FCEV application by using the GREET program from the US Argonne National Laboratory with Korean specific data. As a result, the well-to-tank and well-to-wheel GHG emissions of the FCEV are calculated as 45,638-51,472 g $CO_2eq/GJ$ and 65.0-73.4 g $CO_2eq/km$, respectively
It is not easy to fully fuel high pressure(70 MPa) hydrogen in a hydrogen vehicle tank quickly. This is because the temperature inside the tank rises rapidly due to heat caused by the Joule-Thomson effect, etc. So fueling protocols such as SAE J2601 in the U.S. and JPEC-S 0003 in Japan appeared. However, there is a problem with these protocols that a number assumption are introduced and the content is too complex and limited in scope. This study was conducted to develop a new protocol based on complete real-time communication. In this study, the hydrogen fueling simulation program were used to examine how the pressure ramp rate affects the temperature and pressure rise in the tank and the fueling flow rate. The results confirmed that the first parameter to be considered in determining the pressure ramp rate is the temperature of the tank.
An adsorption chiller is connected to the fuel processing/fuel cell system to increase the energy efficiency of the system. Since, the minimum temperature of $70^{\circ}C$ is needed to operate the adsorption chiller, HT-PEMFC is used as a heating source and $80^{\circ}C$ hot water in the water tank at the system is supplied to the chiller. Experimentally measured COP of the adsorption chiller was between 0.4-0.5 and the total calcuated efficiency of the connected system was between 60% and 70% comparing to 47% without adsorption chilling system.
Commercial hydrogen fuel cell vehicles are charged by compressing gaseous hydrogen to high pressure and storing it in a storage tank in the vehicle. This process causes the temperature of the gas to rise, to ensure the safety to storage tanks, the temperature is limited. Therefore, a heat transfer model is needed to explain this temperature rise. The heat transfer model includes the convective heat transfer phenomenon, and accurate estimation is required. In this study, the convective heat transfer coefficient in the hydrogen fueling process was calculated and compared using various correlation equations considering physical phenomena. The hydrogen fueling process was classified into the fueling line from the dispenser to the tank inlet and the storage tank in the vehicle, and the convective heat transfer coefficients were estimated according to process parameters such as mass flow rate, diameter, temperature and pressure. As a result, in the case of the inside of the filling line, the convective heat transfer coefficient was about 1000 times larger than that of the inside of the storage tank, and in the case of the outside of the filling line, the convective heat transfer coefficient was about 3 times larger than that of the outside of the storage tank. Finally, as a result of a comprehensive analysis of convective heat transfer coefficients in each process, it was found that outside the storage tank was lowest in the entire hydrogen fueling process, thus dominated the heat transfer phenomenon.
The purpose of this paper is to analyze affecting ratios of strength safety in carbon fiber layer thickness of a composite fuel tank for FEV vehicles. To investigate affecting ratios by FEM modeling, the equivalent von Mises stress has been computed on the aluminum liner and carbon fiber layers of composite fuel tanks in hoop and helical directions respectively. According to the FEM results, the affecting ratios of an aluminum liner on the equivalent stress are 77.5% in hoop direction, 18.11% in $70^{\circ}C$ winded helical direction and 4.39% in $12^{\circ}C$ winded helical direction. These trends on the strength safety of carbon fiber layers have been shown as those of an aluminum liner even though the layer thickness ratio of $12^{\circ}C$ inclined carbon fiber is very high of 42% compared with that of hoop layer thickness. Thus, the computed results show that the strength safety of a carbon fiber fuel tank is more influenced by the winding angle rather than the fiber thickness of carbon fiber layers.
YOUNG MIN SEO;HYUN WOO NOH;DONG WOO HA;TAE HYUNG KOO;ROCK KIL KO
Journal of Hydrogen and New Energy
/
v.34
no.4
/
pp.342-349
/
2023
In this study, a numerical simulations were conducted to analyze the phase change behavior of a liquid hydrogen storage container. The effects of gravity direction and hydrogen filling rate on boil-off gas (BOG) in the storage container were investigated. The study employed the volume of fluid, which is the phase change analysis model provided by ANSYS Fluent (ANSYS, Canonsburg, PA, USA), to investigate the sloshing phenomenon inside the liquefied hydrogen fuel tank. Considering the transient analysis time, two-dimensional simulation were carried out to examine the characteristics of the flow and thermal fields. The results indicated that the thermal flow characteristics and BOG phenomena inside the two-dimensional liquefied hydrogen storage container were significantly influenced by changes in gravity direction and hydrogen filling rate.
This study is a research to compare efficiency of new cooling system (chiller, pre-cooler) to that of the conventional system at the hydrogen refueling station (HRS). This study includes contents for thermodynamic comparison of cooling system for HRS and comparison of pros and cons of its components. So It is to establish design concept of cooling system of HRS supplying with fuel cell electric vehicle (FCEV). HRS is charging high pressure H2 (700 bar) to FCEV. However cooling system is need to prevent temperature rise in tank. This cooling system consists of pre-cooler and chiller system.
KIM, KYEONGHO;SHIN, DONGHWAN;KIM, YONGCHAN;KARNG, SARNG WOO
Journal of Hydrogen and New Energy
/
v.27
no.6
/
pp.642-650
/
2016
One of the most feasible solution for reducing the excessive energy consumption and carbon dioxide emission is usage of more efficient fuel such as hydrogen. As is well known, there are three viable technologies for storing hydrogen fuel: compressed gas, metal hydride absorption, and cryogenic liquid. In these technologies, the storage for liquid hydrogen has better energy density by weight than other storage methods. However, the cryogenic liquid storage has a significant disadvantage of boiling losses. That is, high performance of thermal insulation systems must be studied for reducing the boiling losses. This paper presents an experimental study on the effective thermal conductivities of the composite layered insulation with aerogel blankets($Cryogel^{(R)}$ Z and $Pyrogel^{(R)}$ XT-E) and Multi-layer insulation(MLI). The aerogel blankets are known as high porous materials and the good insulators within a soft vacuum range($10^{-3}{\sim}1$ Torr). Also, MLI is known as the best insulator within a high vacuum range(<$10^{-6}{\sim}10^{-3}$ Torr). A vertical axial cryogenic experimental apparatus was designed to investigate the thermal performance of the composite layered insulators under cryogenic conditions as well as consist of a cold mass tank, a heat absorber, annular vacuum space, and an insulators space. The composite insulators were laminated in the insulator space that height was 50 mm. In this study, the effective thermal conductivities of the materials were evaluated by measuring boil-off rate of liquid nitrogen and liquid argon in the cold mass tank.
Even though fuel cell have high efficiency when pure hydrogen from gas tank is used as a fuel source, it is more beneficial to generate hydrogen from city gas (mainly methane) in residential application such as domestic or office environments. Thus hydrogen is generated by reforming process using hydrocarbon. Unfortunately, the reforming process for hydrogen production is accompanied with unavoidable impurities. Impurities such as CO, $CO_2$, $H_2S$, $NH_3$, $CH_4$, and $CH_4$ in hydrogen could cause negative effects on fuel cell performance. Those effects are kinetic losses due to poisoning of the electrode catalysts, ohmic losses due to proton conductivity reduction including membrane and catalyst ionomer layers, and mass transport losses due to degrading catalyst layer structure and hydrophobic property. Hydrogen produced from reformer eventually contains around 73% of $H_2$, 20% or less of $CO_2$, 5.8% of less of $N_2$, or 2% less of $CH_4$, and 10ppm or less of CO. This study is aimed at investigating the effect of carbon dioxide on fuel cell performance. The performance of PEM fuel cell was investigated using current vs. potential experiment, long run(10 hr) test, and electrochemical impedance measurement when the concentrations of carbon dioxide were 10%, 20% and 30%. Also, the concentration of impurity supplied to the fuel cell was verified by gas chromatography(GC).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.