DOI QR코드

DOI QR Code

An Analysis of the Effect of Pressure Ramp Rate on the Major Parameters of the Standard Hydrogen Fueling Protocol

수소충전 시 압력상승률이 표준충전프로토콜 중요변수에 미치는 영향 해석

  • Received : 2019.11.26
  • Accepted : 2020.01.21
  • Published : 2020.02.28

Abstract

It is not easy to fully fuel high pressure(70 MPa) hydrogen in a hydrogen vehicle tank quickly. This is because the temperature inside the tank rises rapidly due to heat caused by the Joule-Thomson effect, etc. So fueling protocols such as SAE J2601 in the U.S. and JPEC-S 0003 in Japan appeared. However, there is a problem with these protocols that a number assumption are introduced and the content is too complex and limited in scope. This study was conducted to develop a new protocol based on complete real-time communication. In this study, the hydrogen fueling simulation program were used to examine how the pressure ramp rate affects the temperature and pressure rise in the tank and the fueling flow rate. The results confirmed that the first parameter to be considered in determining the pressure ramp rate is the temperature of the tank.

수소자동차용기에 높은 압력(70 MPa)의 수소를 빨리 완전 충전하는 것은 쉽지 않다. 그 이유는 줄-톰슨효과 등에 의해 발생하는 열로 인하여 용기내의 온도가 급속히 상승하기 때문이다. 미국의 SAE J2601, 일본의 JPEC-S 0003 같은 충전프로토콜이 제정되어 운영되고 있다. 그러나 이들 프로토콜에는 수많은 가정이 도입되어 내용이 너무 복잡하고 적용범위가 제한적이라는 문제가 있다. 이 연구는 완벽한 실시간 통신에 기반한 새로운 프로토콜을 개발하기 위해서 수행되었다. 이 연구에서는 수소충전 시뮬레이션 프로그램을 이용하여 압력상승률이 자동차용기내의 온도 및 압력 상승과 충전유속에 어떠한 영향을 미치는지 살펴보았다. 그 결과 압력상승률 결정 시 우선 고려하여야 할 매개변수는 자동차 용기의 온도라는 것을 알 수 있었다.

Keywords

References

  1. Society of Automotive Engineers (SAE), "Fueling protocols for light duty gaseous hydrogen surface vehicles (Standard J2601_201612)", (2016)
  2. Schneider, J., Meadows, G., Mathison, S., Veenstra, M. et al., "Validation and Sensitivity Studies for SAE J2601, the Light Duty Vehicle Hydrogen Fueling Standard," SAE Int. J. Alt. Power, 3(2), 257-309, (2014) https://doi.org/10.4271/2014-01-1990
  3. E. Rothuizen, Hydrogen Fuelling Stations: A Thermodynamic Analysis of Fuelling Hydrogen Vehicles for Personal Transportation, Ph.D. Dissertation, Technical University of Denmark, Kongens Lyngby Denmark, (2013)
  4. K. Handa, S. Yamaguchi, "Development of Real-time Pressure Loss Compensation Method for Hydrogen Refueling Station to Increase Refueling Amounts", J. Automatic Engineering, 9(4), 310-315, (2018)
  5. S. Yamaguchi, Y. Fujita, K. Handa, New Tank Volume Estimation Method for Hydrogen Fueling, Society of Automotive Engineers of Japan, (2018)
  6. Y. A. Cengel and M. A. Boles, "Thermodynamics: An Engineering Approach", 5th ed, McGraw-Hill, 227-232, (2006)
  7. M. Deymi-Dashtebayaz, M. Farzaneh-Gord, H. R. Rahbari, "Simultaneous thermodynamic simulation of CNG filling process", J. Chemical Technology, 16(1), 7-14, (2014)
  8. M. Deymi-Dashtebayaz, M. Farzaneh-Gord, N. Nooralipoor, H. Niazmand, "The Complete Modelling Of The Filling Process Of Hydrogen Onboard Vehicle Cylinders", Brizilian J. Chemical Engineering, 33(2), 391-399, (2016) https://doi.org/10.1590/0104-6632.20160332s20140209
  9. M. Mond, M. Kosaka "Understanding of Thermal Characteristics of Fueling Hydrogen High Pressure Tanks and Governing Parameters", J. Alt. Power, 2, 61-67, (2013) https://doi.org/10.4271/2013-01-0474
  10. J. Xiao, S. Ma, X. Wang, S. Deng, T. Yang, P. Benard, "Effect of Hydrogen Refueling Parameters on Final State of Charge", J. Energies, 12, (2019)
  11. M. Farzaneh-Gord, M. Deymi-Dashtebayaz, H. R. Rahbari, H. Niazmand, "Effects of storage types and conditions on compressed hydrogen fuelling stations performance", J. Hydrogen Energy, 37, 3500-3509, (2012) https://doi.org/10.1016/j.ijhydene.2011.11.017
  12. Y. A. Cengel and A. J. Ghajar, "Heat and Mass Transfer: Fundamentals and Applications" 5th ed, McGraw-Hill, 18, 334-337, (2015)
  13. T. Kuroki, N. Sakoda, K. Shinzato, M. Monde, Y. Takata, "Prediction of transient temperature of hydrogen flowing from pre-cooler of refueling station to inlet of vehicle tank", J. Hydrogen Energy, 43, 1846-1854, (2018) https://doi.org/10.1016/j.ijhydene.2017.11.033
  14. P.L. Woodfield, M. Monde, T. Takano, "Heat Transfer Characteristics for Practical Hydrogen Pressure Vessels Being Filled at High Pressure", J. Thermal Science and Technology, 3, 241-253, (2008) https://doi.org/10.1299/jtst.3.241
  15. M. Monde,P. Woodfield, T. Takano, M. Kosaka, "Estimation of temperature change in practical hydrogen pressure tanks being filled at high pressures of 35 and 70 MPa", J. Hydrogen Energy, 37, 5723-5734, (2012) https://doi.org/10.1016/j.ijhydene.2011.12.136
  16. M. Heath, P. L. Woodfield, W. Hall, M. Monde, "An experimental investigation of convection heat transfer during filling of a composite-fibre pressure vessel at low Reynolds number", J. Experimental Thermal and Fluid Science, 54, 151-157, (2014) https://doi.org/10.1016/j.expthermflusci.2014.02.001
  17. T. Bourgeois, F Ammouri, M Weber, C Knapik, "Evaluating the temperature inside a tank during a filling with highly-pressurized gas", J. Hydrogen Energy, 40, 11748-11755, (2015) https://doi.org/10.1016/j.ijhydene.2015.01.096
  18. J. Guo, J. Yang, Y. Zhao, X. Pan, L. Zhang, L. Zhao, J. Zheng, "Investigations on temperature variation within a type III cylinder during the hydrogen gas cycling test", 13, 3926-13934, (2014)
  19. P.L. Woodfield, M. Monde, Y. Mitsutake, "Measurement of Averaged Heat Transfer Coefficients in High-Pressure Vessel during Chagring with Hydrogen Nitrogen or Argon Gas", Thermal Science and Technology, 2, 180-191, (2007) https://doi.org/10.1299/jtst.2.180
  20. T. Kuroki, N. Sakoda, K. Shinzato, M. Monde, Y. Takata, "Dynamic simulation for optimal hydrogen refueling method to Fuel Cell Vehicle tanks", J. Hydrogen Energy, 43, 5714-5721, (2018) https://doi.org/10.1016/j.ijhydene.2018.01.111
  21. D. G. Casey et al., "METHOD FOR CALCULATING HYDROGEN TEMPERATURE DURING VEHICLE FUELNG", Patent No.: US 7,647,194 B1, (2010)
  22. M. Monde, Y. Mitsutake, P. L. Woodfield, S. Maruyama, "Characteristics of Heat Transfer and Temperature Rise of Hydrogen during Rapid Hydrogen Filling at High Pressure", J. Heat Transfer-Asian Research, 36, 13-27, (2007) https://doi.org/10.1002/htj.20140
  23. J. Xiao, P. Benard, R. Chahine, "Charge-discharge cycle thermodynamics for compression hydrogen storage system", J. Hydrogen Energy, 41, 5531-5539, (2016) https://doi.org/10.1016/j.ijhydene.2015.12.136
  24. E. W. Lemmon, M. L. Huber, J. W. Leachman, "Revised Standardized Equation for Hydrogen Gas Densities for Fuel Consumption Applications", J. Res. Natl. Inst. Stand. Technol, 113, 341-350, (2008) https://doi.org/10.6028/jres.113.028
  25. H. Chen, J. Zheng, P. Xu, L. Li, Y. Liu, H. Bie, "Study on real-gas equations of high pressure hydrogen", J. Hydrogen Energy, 35, 3100-3104, (2010) https://doi.org/10.1016/j.ijhydene.2009.08.029