DOI QR코드

DOI QR Code

해양플랜트 HVAC 시스템용 플레이트·쉘 타입 증발기에 관한 연구

A Study on Plate & Shell type Evaporator in HVAC System for Offshore Plant

  • 투고 : 2019.12.23
  • 심사 : 2020.02.16
  • 발행 : 2020.02.28

초록

해양플랜트용 HVAC(Heating Ventilation and Air-Conditioning) 시스템의 컨덴싱 유닛(condensing unit)의 경우, DX(Direct Expansion) 코일보다는 온도 안정성이 뛰어난 칠러 시스템(chiller system)을 주로 사용하고 있다. 칠러시스템의 구성품 중 대형 냉매압축기와 전자식 팽창밸브 등은 대부분 수입되고 있다. 이에 칠러 시스템의 크기는 국내에서 제작되는 열교환기(증발기, 응축기)에 의해 좌우된다. 현재 갈수록 심화되고 있는 사용공간의 제한으로 인해 선주사 및 조선소에서는 장비 크기를 컴팩트하게 해줄 것을 메이커에 지속적으로 요구하고 있다. 이에 본 논문에서는 해양플랜트에서 만액식(flooded) 칠러 시스템의 증발기로 주로 사용되고 있는 쉘-튜브형 열교환기를 컴팩트한 플레이트-쉘 열교환기로 대체하기 위한 주요개발과정을 소개하고, 이와 함께 개발된 플레이트-쉘 열교환기를 실제 증발기로 적용한 만액식 칠러 시스템을 제작하여 그 성능을 실험적으로 평가하였으며 그 결과를 제공하고자 한다.

Chiller systems which have better temperature stability than Direction expansion coils are often used as condensing units in HVAC systems for offshore plants. Large capacity compressors and electronic expansion valves in chiller systems are mostly imported, and the size of a chiller system depends on heat exchangers such as evaporators and condensers which are locally produced. Due to limited space in the offshore plants, shipyards are demanding manufacturers to make equipment compact. In this paper, a shell & tube heat exchanger, which is used as an evaporator in the conventional flooded chiller system, is replaced by a newly developed compact plate & shell heat exchanger. The main development process of the plate & shell heat exchanger is introduced, and its performances were experimentally evaluated with a real flooded chiller system, and the results are presented.

키워드

참고문헌

  1. Yan, Y. Y., Lio, H. C., and Lin, T. F., "Condensation heat transfer and pressure drop of refrigerant R-134a in a plate heat exchanger", Journal of Heat and Mass Transfer, 42, 993-1006, (1999) https://doi.org/10.1016/S0017-9310(98)00217-8
  2. Hsieh, Y. Y., and Lin, T. F., "Saturated flow boiling heat transfer and pressure drop of refrigerant R-410A in a vertical plate heat exchanger", Journal of Heat and Mass Transfer, 45, 1033-1044, (2002) https://doi.org/10.1016/S0017-9310(01)00219-8
  3. Longo, G. A., Gasparella, A., and Sartori, R., "Experimental heat transfer coefficients during refrigerant vaporisation and condensation inside herringbone-type plate heat exchangers with enhanced surfaces", Journal of Heat and Mass Transfer, 47, 4125-4136, (2004) https://doi.org/10.1016/j.ijheatmasstransfer.2004.05.001
  4. Kuo, W. S., Lie, Y. M., Hsieh, Y. Y., and Lin, T. F., "Condensation heat transfer and pressure drop of refrigerant R-410A flow in a vertical plate heat exchanger", Journal of Heat and Mass Transfer, 48, 5205-5220, (2005) https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.023
  5. Huang, J., Thomas, J., Sheer, T., and Bailey-McEwan, M., "Heat transfer and pressure drop in plate heat exchanger refrigerant evaporators", Journal of Refrigeration, 35, 325-335, (2012) https://doi.org/10.1016/j.ijrefrig.2011.11.002
  6. AHRI, Performance Rating of Liquid to Liquid Heat Exchangers, AHRI, Arlington, (2015)
  7. ASME, ASME PTC 12.5-2000 Single Phase Heat Exchangers, ASME, Washington, D.C., (2000)
  8. Muley, A., and Manglik, R. M., "Experimental Study of Turbulent Flow Heat Transfer and Pressure Drop in a Plate Heat Exchanger with Chevron Plates", Journal of Heat Transfer, 121(1), 110-117, (1999) https://doi.org/10.1115/1.2825923
  9. Farrell, P., Wert, K., and Webb, R., "Heat Transfer and Friction Characteristics of Turbulator Radiator Tubes", SAE Technical Paper Series, No. 910197, (1991)
  10. Shah, R. K., and Focke, W. W., Plate heat exchangers and their design theory, in Heat Transfer Equipment Design, Shah, R. K., Subbarao, E. C., and Mashelkar, R. A.(eds.), Hemisphere Publishing, New York, (1988)