• Title/Summary/Keyword: Hydrogen Storage alloy

Search Result 127, Processing Time 0.028 seconds

Theory & Design of Electrocatalyst for Polymer Electrolyte Membrane Fuel Cell (고분자 연료전지용 전기촉매의 이론과 설계)

  • Yoo, Sung-Jong;Jeon, Tae-Yeol;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.1
    • /
    • pp.11-25
    • /
    • 2009
  • Fuel cells are expected to be one of the major clean new energy sources in the near future. However, the slow kinetics of electrocatalytic hydrogen oxidation reaction (HOR) and oxygen reduction reaction (ORR), and the high loading of Pt for the anode and cathode material are the urgent issues to be addressed since they determine the efficiency and the cost of this energy source. In this review paper, a new approach was developed for designing electrocatalysts for the HOR and ORR in fuel cells. It was found that the electronic properties of Pt could be fine-tuned by the electronic and geometric effects introduced by the substrate alloy metal and the lateral effects of the neighboring metal atoms. The role of substrate was found reflected in a volcano plot for the HOR and ORR as a function of their calculated d-band centers. This paper demonstrated a viable way to designing the electrocatalysts which could successfully alleviate two issue facing the commercializing of the fuel cell-the cost of electrocatalysts and their efficiency.

Effect of Addition Elements on the Production of the 2-17 Type High Performance of the Rare Earth Permanent Magnet Materials by the Reduction and Diffusion Process (환원·확산법에 의한 2-17형 고성능 희토류영구자석 재료의 제조에 있어서 첨가원소의 영향)

  • Song, Chang-Been;Cho, Tong-Rae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.4
    • /
    • pp.333-339
    • /
    • 1995
  • The reduction and diffusion process(R-D process) is an economical way to produce the functional materials which contain rare-earth elements and has been applied to the production of rare-earth magnet meterials($SmCo_5$, $Nd_{15}Fe_{77}B_8$), magneto-optical(MO) target materials and hydrogen storage alloy, etc. However, because of difficult to control of the final composition, the R-D process has not been applied to production of the 2-17 type rare earth permanent magnet materials which contain several elements. Therefore, this work was as a basic study for the production of the 2-17 type rare earth permanent materials with composition $Sm(Co_{0.72}Fe_{0.21}Cu_{0.05}Zr_{0.03})_{7.9}$ by the R-D process, the following were mainy examined ; the amount of metallic calcium as a reductant, homogenization condition of the alloy after the R-D reaction, masuring of magnetic properties of the sample after step aging. The sample prepared by the R-D process contained a little more oxygen than that prepared by the melting method, however, showed almost the same magnetic properties.

  • PDF

Temperature-dependent axial mechanical properties of Zircaloy-4 with various hydrogen amounts and hydride orientations

  • Bang, Shinhyo;Kim, Ho-a;Noh, Jae-soo;Kim, Donguk;Keum, Kyunghwan;Lee, Youho
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1579-1587
    • /
    • 2022
  • The effects of hydride amount (20-850 wppm), orientation (circumferential and radial), and temperature (room temperature, 100 ℃, 200 ℃) on the axial mechanical properties of Zircaloy-4 cladding were comprehensively examined. The fraction of radial hydride fraction in the cladding was quantified using PROPHET, an in-house radial hydride fraction analysis code. Uniaxial tensile tests (UTTs) were conducted at various temperatures to obtain the axial mechanical properties. Hydride orientation has a limited effect on the axial mechanical behavior of hydrided Zircaloy-4 cladding. Ultimate tensile stress (UTS) and associated uniform elongation demonstrated limited sensitivity to hydride content under UTT. Statistical uncertainty of UTS was found small, supporting the deterministic approach for the load-failure analysis of hydrided Zircaloy-4 cladding. These properties notably decrease with increasing temperature in the tested range. The dependence of yield strength on hydrogen content differed from temperature to temperature. The ductility-related parameters, such as total elongation, strain energy density (SED), and offset strain decrease with increasing hydride contents. The abrupt loss of ductility in UTT was found at ~700 wppm. Demonstrating a strong correlation between total elongation and offset strain, SED can be used as a comprehensive measure of ductility of hydrided zirconium alloy.

THE EFFECTS OF CREEP AND HYDRIDE ON SPENT FUEL INTEGRITY DURING INTERIM DRY STORAGE

  • Kim, Hyun-Gil;Jeong, Yong-Hwan;Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • v.42 no.3
    • /
    • pp.249-258
    • /
    • 2010
  • Recently, many utilities have considered interim dry storage of spent nuclear fuel as an option for increasing spent fuel storage capacity. Foreign nuclear regulatory committees have provided some regulatory and licensing requirements for relatively low- and medium-burned spent fuel with respect to the prevention of spent fuel degradation during transportation and interim dry storage. In the present study, the effect of cladding creep and hydride distribution on spent fuel degradation is reviewed and performance tests with high-burned Zircaloy-4 and advanced Zr alloy spent fuel are proposed to investigate the effect of burnup and cladding materials on the current regulatory and licensing requirements. Creep tests were also performed to investigate the effect of temperature and tensile hoop stress on hydride reorientation and subsequently to examine the temperature and stress limits against cladding material failure. It is found that the spent fuel failure is mainly caused by cladding creep rupture combined with mechanical strength degradation and hydride reorientation. Hydride reorientation from the circumferential to radial direction may reduce the critical stress intensity that accelerates radial crack propagation. The results of cladding creep tests at $400^{\circ}C$ and 130MPa hoop stress performed in this study indicate that hydride reorientation may occur between 2.6% to 7.0% strain in tube diameter with a hydrogen content range of 40-120ppm. Therefore, it is concluded that hydride re-orientation behaviour is strongly correlated with the cladding creep-induced strain, which varies as functions of temperature and stress acting on the cladding.

Study on the control technique for the heat transportation system using metal hydride (수소저장합금을 이용한 열수송시스템 제어기술 연구)

  • Sim, K.S.;Kim, J.W.;Kim, J.D.;Myung, K.S.
    • Journal of Hydrogen and New Energy
    • /
    • v.11 no.1
    • /
    • pp.43-49
    • /
    • 2000
  • The heat transportation from a complex of industry to a rural area needs more efficient method because the distance between them is usually more than 10km. Conventional heat transportation using steam or hot water via pipe line has limits in transportation distance (about 3~5 km) because of the heat loss and frictional loss in the pipe line. Metal hydride can absorb or discharge hydrogen through exothermic or endothermic reaction. After releasing hydrogen from metal hydride by means of the waste heat from industry, we can transport this hydrogen to urban area via pipe line. In urban areas, other metal alloy reacts with this hydrogen to form metal hydride and produces heat for heating. Cool heat is also obtained if it is possible to use metal hydride with low reaction temperature. Therefore, metal hydride can be used as a media for transportation and storage of heat. $MmNi_{4.5}Al_{0.5}Zr_{0.003}$, $LaNi_5$, $Zr_{0.9}Ti_{0.1}Cr_{0.6}Fe_{1.4}$, $MmNi_{4.7}Al_{0.1}Fe_{0.1}V_{0.1}$ alloys were selected for this purpose and the properties of those metal hydrides were discussed. The design and control techniques were proposed and discussed for this heat transportation system using metal hydride.

  • PDF

A Study on the Electrode Properties of $CaNi_5$ Hydrogen Storage Alloy by F-Treatment (불화처리에 의한 $CaNi_5$ 수소저장합금의 전극 특성에 관한 연구)

  • 오세진;강성군
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 1998.11a
    • /
    • pp.92-92
    • /
    • 1998
  • 반도체 기술의 경이적인 발전에 힘입이 최근 휴대용 이동통신기기, 노트북 컴퓨터 등 무선전자제품의 폭발적인 수요와 함께 이들의 소형화, 경량화가 요구되어 전원인 2차전지의 경량화, 고용량화, 장수명화의 필요성이 절실해졌다. Ni-MH 전지는 Ni-Cd전지에 비해 에너지밀도가 1.5~2배에 이르고 충방전 cycle이 길며 오염물질이 없어 환경 친화적이라는 장점이 었다. Ni-MH 전지의 성능은 음극재료인 수소저장합금에 의해 좌우되므로 수소저장능력이 크고 내식 성이 우수한 합금개발이 중요하다. $CaNi_5$는 수소저장능력이 크고 매장량이 많아 값이 싸다는 장점이 있지만 KOH 용액에서 내구성이 떨어진다는 단점이 있어 주로 Heat Pump 재료에만 사용이 제한되어왔다. 본 실험에서는 결정 구조의 nanocrystalline 및 amorphous화함으로써 해리압의 변화, 방전용량의 변화 등 새로운 전극 특성을 나타낸다고 보고되고 있는 MG (Mechanical Grinding)방법을 통해 CaNis 합금의 전극특성의 변화를 살펴보았고, 아울러 고상-기상반응에서 표면에 형성된 산화피막을 제거하여 안정한 불화물을 표면에 형성시킴으로써 불순물 가스에 대한 내구성을 높이고 활성화특성을 향상 시킨다고 보고되고있는 불화처리 방법을 이용하여 불화처리 시간을 달리하면서 용액 속에서의 pH의 변화, ICP분석, 전극의 성능 및 표면 특성변화를 충방전 test, SEM 등을 통해 고찰하였다.

  • PDF

Characteristics of Al Alloy as a Material for Hydrolysis Reactor of NaBH4 (NaBH4 가수분해 반응기 소재로서 알루미늄 합금의 특성 연구)

  • Jung, Hyeon-Seong;Oh, Sung-June;Jeong, Jae-Jin;Na, Il-Chai;Chu, Cheun-Ho;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.677-681
    • /
    • 2015
  • Aluminum alloy was examined as a material of low weight reactor for hydrolysis of $NaBH_4$. Aluminum is dissolved with alkali, but there is NaOH as a stabilizer in $NaBH_4$ solution. To decrease corrosion rate of aluminum, decrease NaOH concentration and this result in loss of $NaBH_4$ during storage of $NaBH_4$ solution. Therefore stability of $NaBH_4$ and corrosion of aluminum should be considered in determining the optimum NaOH concentration. $NaBH_4$ stability and corrosion rate of aluminum were measured by hydrogen evolution rate. $NaBH_4$ stability was tested at $20{\sim}50^{\circ}C$ and aluminum corrosion was measured at $60{\sim}90^{\circ}C$. The optimum concentration of NaOH was 0.3 wt%, considering both $NaBH_4$ stability and aluminun corrosion. $NaBH_4$ hydrolysis reaction continued 200min in aluminum No 6061 alloy reactor with 0.3 wt% NaOH at $80{\sim}90^{\circ}C$.