DOI QR코드

DOI QR Code

Theory & Design of Electrocatalyst for Polymer Electrolyte Membrane Fuel Cell

고분자 연료전지용 전기촉매의 이론과 설계

  • Yoo, Sung-Jong (School of Chemical and Biological Engineering & Research Center for Energy Conversion and Storage, Seoul National University) ;
  • Jeon, Tae-Yeol (School of Chemical and Biological Engineering & Research Center for Energy Conversion and Storage, Seoul National University) ;
  • Sung, Yung-Eun (School of Chemical and Biological Engineering & Research Center for Energy Conversion and Storage, Seoul National University)
  • 유성종 (서울대학교 화학생물공학부) ;
  • 전태열 (서울대학교 화학생물공학부) ;
  • 성영은 (서울대학교 화학생물공학부)
  • Published : 2009.02.28

Abstract

Fuel cells are expected to be one of the major clean new energy sources in the near future. However, the slow kinetics of electrocatalytic hydrogen oxidation reaction (HOR) and oxygen reduction reaction (ORR), and the high loading of Pt for the anode and cathode material are the urgent issues to be addressed since they determine the efficiency and the cost of this energy source. In this review paper, a new approach was developed for designing electrocatalysts for the HOR and ORR in fuel cells. It was found that the electronic properties of Pt could be fine-tuned by the electronic and geometric effects introduced by the substrate alloy metal and the lateral effects of the neighboring metal atoms. The role of substrate was found reflected in a volcano plot for the HOR and ORR as a function of their calculated d-band centers. This paper demonstrated a viable way to designing the electrocatalysts which could successfully alleviate two issue facing the commercializing of the fuel cell-the cost of electrocatalysts and their efficiency.

연료전지는 가까운 미래를 위한 핵심 청정 신에너지원 중의 하나로 기대된다. 그러나 고분자 연료전지에서 공기극은 느린 산소환원반응과 많은 백금 사용 때문에 상업화에 어려움을 겪고 있으며, 이것을 해결하는 것이 최근 당면 과제이다. 또한 연료극은 일산화탄소의 피독 현상과 전극의 안정성이 문제시 되고 있다. 본 총설에서는 고분자 연료전지를 위한 연료극, 공기극 전기화학 촉매의 이론적 접근을 통해 촉매를 설계하는 최근 연구 내용을 소개하려 한다. 촉매 설계는 합금 전기 화학 촉매를 통해 접근 했으며, 이는 electronic, geometric, lateral effects를 손쉽게 조절할 수 있게 한다. 이것은 계산되어진 d-band center의 함수에 의존하며, 촉매의 활성과 큰 관계를 가짐을 발견하였다. 본고에서 지향하는 촉매의 최종 방향은 이론적 접근을 통해서 촉매의 사용량을 줄이면서 효율적으로 사용하는 것이다.

Keywords

References

  1. R. Wengenmayr and T. Bhrke, Renewable energy :sustainable energy concepts for the future, Wiley-VCH, Weinheim (Germany), (2008)
  2. C. A. Grimes, O. K. Varghese, and S. Ranjan, Light, Water, Hydrogen: The Solar Generation of Hydrogen by Water Photoelectrolysis, Springer, New York (USA), (2008)
  3. K. Kordesch and G. Simander, Fuel Cells and their Applications, VCH, Weinheim (Germany), (1996)
  4. W. Vielstich, A. Lamm, and H. Gasteiger, Handbook of Fuel Cells: Fundamentals, Technology and Applications, Wiley, Chichester (UK), (2003)
  5. I. Fishtik, C. A. Callaghan, J. D. Fehribach, and R. Datta, 'A reaction route graph analysis of the electrochemical hydrogen oxidation and evolution reactions' J. Electroanal. Chem., 576, 57 (2005) https://doi.org/10.1016/j.jelechem.2004.10.007
  6. R. R. Adzic, Electrocatalysis, Wiley-VCH, New York (USA), (1998)
  7. A. Ruban, B. Hammer, P. Stoltze, H. L. Skriver, and J. K. Norskov, 'Surface electronic structure and reactivity of transition and noble metals' J. Mol. Catal. A, 115, 421 (1997) https://doi.org/10.1016/S1381-1169(96)00348-2
  8. B. Hammer and J. K. Norskov, 'Theoretical surface science and catalysis-calculations and concepts' Adv. Catal., 45, 71 (2000) https://doi.org/10.1016/S0360-0564(02)45013-4
  9. J. Greeley, J. K. Norskov, and M. Mavrikakis, 'Electronic structure and catalysis on metal surfaces' Annu. Rev. Phys. Chem., 53, 319 (2002) https://doi.org/10.1146/annurev.physchem.53.100301.131630
  10. F. Garin, 'Environmental catalysis' Catal. Today, 89, 255 (2004) https://doi.org/10.1016/j.cattod.2003.12.002
  11. B. C. Gates and H. Knoezinger, eds., Advances in Catalysis (Volume 45), Academic Press, San Diego (USA), (2000)
  12. Y. Xu, A. V. Ruban, and M. Mavrikakis, 'Adsorption and Dissociation of O2 on PtCo and PtFe Alloys' J. Am. Chem. Soc., 126, 4714 (2004) https://doi.org/10.1021/ja031701+
  13. J. A. Rodriguez and D. W. Goodman, 'The Nature of the Metal-Metal Bond in Bimetallic Surfaces' Science, 257, 897 (1992) https://doi.org/10.1126/science.257.5072.897
  14. F. Buatier de Mongeot, M. Scherer, B. Gleich, E. Kopatzki, and R. J. Behm, 'CO adsorption and oxidation on bimetallic Pt/Ru(0001) surfaces-a combined STM and TPD/TPR study' Surf. Sci., 411, 249 (1998) https://doi.org/10.1016/S0039-6028(98)00286-6
  15. M. Mavrikakis, B. Hammer, and J. K. Norskov, 'Effect of Strain on the Reactivity of Metal Surfaces' Phys. Rev. Lett., 81, 2819 (1998) https://doi.org/10.1103/PhysRevLett.81.2819
  16. Y. Gauthier, M. Schmid, S. Padovani, E. Lundgren, V. Bu, G. Kresse, J. Redinger, and P. Varga, 'Adsorption Sites and Ligand Effect for CO on an Alloy Surface: A Direct View' Phys. Rev. Lett., 87, 036103 (2001) https://doi.org/10.1103/PhysRevLett.87.036103
  17. P. Liu and J. K. Norkov, 'Ligand and ensemble effects in adsorption on alloy surfaces' Phys. Chem. Chem. Phys., 3, 3814 (2001) https://doi.org/10.1039/b103525h
  18. D. Tomnek, S. Mukherjee, V. Kumar, and K. H. Bennemann, 'Calculation of chemisorption and absorption induced surface segregation' Surf. Sci., 114, 11 (1982) https://doi.org/10.1016/0039-6028(82)90452-6
  19. S. C. Fain and J. M. McDavid, 'Work-function variation with alloy composition: Ag-Au' Phys. Rev. B, 9, 5099 (1974) https://doi.org/10.1103/PhysRevB.9.5099
  20. H. Yamauchi, 'Surface segregation in Jellium binary solid solutions' Phys. Rev. B, 31, 7688 (1985) https://doi.org/10.1103/PhysRevB.31.7688
  21. A. Kiejna, 'Comment on the surface segregation in alkalimetal alloys' J. Phys. Condens. Matter, 2, 6331 (1990) https://doi.org/10.1088/0953-8984/2/29/012
  22. B. Coq and F. Figueras, 'Structure-Activity relationships in catalysis by metals: Some aspects of particle size, bimetallic and supports effects' Coord. Chem. Rev., 178-180, 1753 (1998) https://doi.org/10.1016/S0010-8545(98)00058-7
  23. A. K. N. Reddy and J. O. M. Bockris, Modern electrochemistry, Plenum Press, New York (USA), (1973)
  24. I. Fishtik, C. A. Callaghan, J. D. Fehribach, and R. Datta, 'A reaction route graph analysis of the electrochemical hydrogen oxidation and evolution reactions' J. Electroanal. Chem., 576, 57 (2005) https://doi.org/10.1016/j.jelechem.2004.10.007
  25. K. Christmann, Electrocatalysis, Wiley-VCH, New York (USA), (1998)
  26. A. J. Bard and L. R. Faulkner, Electrochemical methods (Fundamentals and applications), John Wiley & Sons, (2001)
  27. (a) J. A. Turner, 'A realizable renewable energy future' Science, 285, 687 (1999) https://doi.org/10.1126/science.285.5428.687
  28. (b) L. Schlapbach and A. Zttel, 'Hydrogen-storage materials for mobile applications' Nature, 414, 353 (2001) https://doi.org/10.1038/35104634
  29. J. Greeley and M. Mavrikakis, 'Alloy catalysts designed from first principles' Nature Mater., 3, 810 (2004) https://doi.org/10.1038/nmat1223
  30. S. Dahl, C. J. H. Jacobsen, A. Logadottir, S. Bahn, L. B. Hansen, M. Bollinger, and H. Bengaard, 'Universality in heterogeneous catalysis' J. Catal., 209, 275 (2002) https://doi.org/10.1006/jcat.2002.3615
  31. S. J. Yoo, H.-Y. Park, T.-Y. Jeon, I.-S. Park, Y.-H. Cho, and Y.-E. Sung, 'Promotional effect of palladium on the hydrogen oxidation reaction at a PtPd alloy electrode' Angew. Chem. Int. Ed., 47, 9307 (2008) https://doi.org/10.1002/anie.200802749
  32. L. A. Kibler, 'Hydrogen electrocatalysis' Chem Phys Chem, 7, 985 (2006) https://doi.org/10.1002/cphc.200500646
  33. J. Greeley, J. K. N$\phi$rskov, L. A. Kibler, A. M. El-Aziz, and D. M. Kolb, 'Hydrogen evolution over bimetallic systems: Understanding the trends' ChemPhysChem, 7, 1032 (2006) https://doi.org/10.1002/cphc.200500663
  34. K. Wang, H. A. Gasteiger, N. M. Markovic, and P. N. Ross, 'On the reaction pathway for methanol and carbon monoxide electrooxidation on Pt-Sn alloy versus Pt-Ru alloy surfaces' Electrochim. Acta, 41, 2587 (1996) https://doi.org/10.1016/0013-4686(96)00079-5
  35. S. Wasmus and A. Kver, 'Methanol oxidation and direct methanol fuel cells: A selective review' J. Electroanal. Chem., 461, 14 (1999) https://doi.org/10.1016/S0022-0728(98)00197-1
  36. C. Lamy, A. Lima, V. LeRhun, F. Delime, C. Coutanceau, and J.-M. Lger, 'Recent advances in the development of direct alcohol fuel cells (DAFC)' J. Power Sources, 105, 283 (2002) https://doi.org/10.1016/S0378-7753(01)00954-5
  37. M. Watanabe and S. Motoo, 'Electrocatalysis by ad-atoms part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms' J. Electroanal. Chem., 60, 267 (1975) https://doi.org/10.1016/S0022-0728(75)80261-0
  38. E. Antolini, J. R. C. Salgado, and E. R. Gonzalez, 'Carbon supported Pt75M25 (M= Co, Ni) alloys as anode and cathode electrocatalysts for direct methanol fuel cells' J. Electroanal. Chem., 580, 145 (2005) https://doi.org/10.1016/j.jelechem.2005.03.023
  39. A. Damjanovic, M. A. Genshaw, and J. O. M. Bockris, 'The Mechanism of Oxygen Reduction at Platinum in Alkaline Solutions with Special Reference to $H_2O_2$' J. Electrochem. Soc., 114, 1107 (1967) https://doi.org/10.1149/1.2426425
  40. J. S. Griffith, Pro. R. Soc. London 1956, Ser.A, 23
  41. L. Pauling, 'Nature of the Iron-Oxygen Bond in Oxyhae moglobin' Nature, 203, 182 (1964)
  42. E. Yeager, 'Recent Advances in the Science of Electrocatalysis' J. Electrochem. Soc., 128, 160C (1981) https://doi.org/10.1149/1.2127492
  43. C. Puglia, A. Nilsson, B. Hernns, and O. Karis, P. Bennich, and N. Mrtensson, 'Physisorbed, chemisorbed and dissociated $O_2$ on Pt(111) studied by different core level spectroscopy methods' Sur. Sci., 342, 119 (1995) https://doi.org/10.1016/0039-6028(95)00798-9
  44. A. W. Edith Chan, Roald Hoffmann, and W. Ho, 'Theoretical aspects of photoinitiated chemisorption, dissociation, and desorption of oxygen on platinum (111)' Langmuir, 8, 1111 (1992) https://doi.org/10.1021/la00040a017
  45. A. Damjanovic, V. Brusic, and John O'M. Bockris, 'Mechanism of oxygen reduction related to electronic structure of gold-palladium alloy' J. Phys. Chem., 71, 2741 (1967) https://doi.org/10.1021/j100867a061
  46. N. M. Markovic and P. N. Ross In: Wieckowski, Editor, Interfacial Electrochemistry. Theory, Experiment and Applications, Marcel Dekker, New York (USA), (1999)
  47. J. X. Wang, N. M. Markovic, and R. R. Adzic, 'Kinetic Analysis of Oxygen Reduction on Pt(111) in Acid Solutions: Intrinsic Kinetic Parameters and Anion Adsorption Effects' J. Phys. Chem. B, 108, 4127 (2004) https://doi.org/10.1021/jp037593v
  48. R. A. Sidik and A. B. Anderson, 'Density functional theory study of $O_2$ electroreduction when bonded to a Pt dual site' J. Electroanal. Chem., 528, 69 (2002) https://doi.org/10.1016/S0022-0728(02)00851-3
  49. S. J. Clouser, J. C. Huang, and E. Yeager, 'Temperature dependence of the Tafel slope for oxygen reduction on platinum in concentrated phosphoric acid' J. Appl. Electrochem., 23, 597, (1993) https://doi.org/10.1007/BF00721951
  50. A. C. Luntz, J. Grimblot, and D. E. Fowler, 'Sequential precursors in dissociative chemisorption: $O_2$ on Pt(111)' Phys. Rev. B, 39, 12903 (1989) https://doi.org/10.1103/PhysRevB.39.12903
  51. B. N. Grgur, N. M. Markovi, and P. N. Ross, Jr., 'Underpotential Deposition of Lead on Pt(111) in Perchloric Acid Solution' Langmuir, 13, 6370 (1997) https://doi.org/10.1021/la970699v
  52. Nenad M. Markovic, Hubert A. Gasteiger, and Philip N. Ross Jr., 'Oxygen Reduction on Platinum Low-Index Single-Crystal Surfaces in Alkaline Solution: Rotating Ring Disk Pt(hkl) Studies' J. Phys. Chem., 100, 6715 (1996) https://doi.org/10.1021/jp9533382
  53. A. B. Anderson and T. V. Albu, 'Catalytic Effect of Platinum on Oxygen Reduction An Ab Initio Model Including Electrode Potential Dependence' J. Electrochem. Soc., 147, 4229, (2000) https://doi.org/10.1149/1.1394046
  54. J. K. N$\phi$rskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, and H. Jonsson, 'Origin of the overpotential for oxygen reduction at a fuel-cell cathode' J. Phys. Chem. B, 108, 17886 (2004) https://doi.org/10.1021/jp047349j
  55. S. Mukerjee, 'Particle size and structural effects in platinum electrocatalysis' J. Appl. Electrochem., 20, 537 (1990) https://doi.org/10.1007/BF01008861
  56. S. Mukerjee, S. Srinivasan, M. P. Soriaga, and J. McBreen, 'Effect of preparation conditions of Pt alloys on their electronic, structural, and electrocatalytic activities for oxygen reduction-XRD, XAS, and electrochemical studies' J. Phys. Chem., 99, 4577 (1995) https://doi.org/10.1021/j100013a032
  57. N. Giordano, E. Passalacqua, L. Pino, A. S. Arico, V. Antonucci, M. Vivaldi, and K. Kinoshita, 'Analysis of platinum particle size and oxygen reduction in phosphoric acid' Electrochim. Acta, 36, 1979 (1991) https://doi.org/10.1016/0013-4686(91)85082-I
  58. J. Zhang, M. B. Vukmirovic, Y. Xu, M. Mavrikakis, R. R. Adzic, 'Controlling the Catalytic Activity of Platinum-Monolayer Electrocatalysts for Oxygen Reduction with Different Substrates' Angew. Chem. Int. Ed., 44, 2132 (2005) https://doi.org/10.1002/anie.200462335

Cited by

  1. A Study on Oxygen Evolution Activity of Co3O4with different morphology prepared by Ultrasonic Spray Pyrolysis for Water Electrolysis vol.54, pp.6, 2016, https://doi.org/10.9713/kcer.2016.54.6.854