• 제목/요약/키워드: Hydrogen Peroxide-induced Apoptosis

검색결과 138건 처리시간 0.031초

Function of NADPH Oxidases in Diabetic Nephropathy and Development of Nox Inhibitors

  • Lee, Sae Rom;An, Eun Jung;Kim, Jaesang;Bae, Yun Soo
    • Biomolecules & Therapeutics
    • /
    • 제28권1호
    • /
    • pp.25-33
    • /
    • 2020
  • Several recent studies have reported that reactive oxygen species (ROS), superoxide anion and hydrogen peroxide (H2O2), play important roles in various cellular signaling networks. NADPH oxidase (Nox) isozymes have been shown to mediate receptor-mediated ROS generation for physiological signaling processes involved in cell growth, differentiation, apoptosis, and fibrosis. Detectable intracellular levels of ROS can be induced by the electron leakage from mitochondrial respiratory chain as well as by activation of cytochrome p450, glucose oxidase and xanthine oxidase, leading to oxidative stress. The up-regulation and the hyper-activation of NADPH oxidases (Nox) also likely contribute to oxidative stress in pathophysiologic stages. Elevation of the renal ROS level through hyperglycemia-mediated Nox activation results in the oxidative stress which induces a damage to kidney tissues, causing to diabetic nephropathy (DN). Nox inhibitors are currently being developed as the therapeutics of DN. In this review, we summarize Nox-mediated ROS generation and development of Nox inhibitors for therapeutics of DN treatment.

Antioxidant Effect of Filipendula glaberrima Nakai Extract in HepG2 Cells

  • Hong, Mijin;Hwang, Dahyun
    • 대한의생명과학회지
    • /
    • 제28권1호
    • /
    • pp.25-33
    • /
    • 2022
  • The imbalance of oxidative stress due to the excessive production of reactive oxygen species (ROS) leads to the pathogenesis of liver disease. To prevent this, the role of antioxidant mechanisms is important. Antioxidant studies have been reported on the Filipendula glaberrima Nakai. However, studies applied to HepG2 cells, which are human liver cells, have not yet been conducted. In this study, 70% ethanol extract of Filipendula glaberrima Nakai (FGE) was prepared and antioxidant activity was investigated. It was confirmed whether FGE pretreatment could reduce hydrogen peroxide-induced oxidative stress in HepG2 cells. The increase in gene expression of antioxidant biomarkers and the scavenging ability of ROS were measured, and Hoechst 33342 staining was used to know the inhibitory effect of the apoptosis. As a result, FGE significantly increased SOD (2.6-fold), CAT (4.4-fold), MT-1A (3.1-fold), GPx (4-fold), and G6PD (2.4)-fold compared to the H2O2-treated group. FGE directly inhibited ROS production from 13.4 to 3.6 (the fluorescence mean of DCF-DA) and also reduced apoptotic cells from 45% to 10% (Hoechst 33342 staining) at 2.5 ㎍/mL. These results demonstrate the excellent antioxidant activity of FGE and show that it can be used as a functional food to prevent liver disease.

Propofol protects human keratinocytes from oxidative stress via autophagy expression

  • Yoon, Ji-Young;Jeon, Hyun-Ook;Kim, Eun-Jung;Kim, Cheul-Hong;Yoon, Ji-Uk;Park, Bong-Soo;Yu, Su-Bin;Kwak, Jin-Won
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • 제17권1호
    • /
    • pp.21-28
    • /
    • 2017
  • Background: The skin consists of tightly connected keratinocytes, and prevents extensive water loss while simultaneously protecting against the entry of microbial pathogens. Excessive cellular levels of reactive oxygen species can induce cell apoptosis and also damage skin integrity. Propofol (2,6-diisopropylphenol) has antioxidant properties. In this study, we investigated how propofol influences intracellular autophagy and apoptotic cell death induced by oxidative stress in human keratinocytes. Method: The following groups were used for experimentation: control, cells were incubated under normoxia (5% $CO_2$, 21% $O_2$, and 74% $N_2$) without propofol; hydrogen peroxide ($H_2O_2$), cells were exposed to $H_2O_2$ ($300{\mu}M$) for 2 h; propofol preconditioning (PPC)/$H_2O_2$, cells pretreated with propofol ($100{\mu}M$) for 2 h were exposed to $H_2O_2$; and 3-methyladenine $(3-MA)/PPC/H_2O_2$, cells pretreated with 3-MA (1 mM) for 1 h and propofol were exposed to $H_2O_2$. Cell viability, apoptosis, and migration capability were evaluated. Relation to autophagy was detected by western blot analysis. Results: Cell viability decreased significantly in the $H_2O_2$ group compared to that in the control group and was improved by propofol preconditioning. Propofol preconditioning effectively decreased $H_2O_2$-induced cell apoptosis and increased cell migration. However, pretreatment with 3-MA inhibited the protective effect of propofol on cell apoptosis. Autophagy was activated in the $PPC/H_2O_2$ group compared to that in the $H_2O_2$ group as demonstrated by western blot analysis and autophagosome staining. Conclusion: The results suggest that propofol preconditioning induces an endogenous cellular protective effect in human keratinocytes against oxidative stress through the activation of signaling pathways related to autophagy.

백작약 에탄올 추출물이 mouse embryonic fibroblast cells에 미치는 항산화 효과 (Antioxidant Effect of Paeonia Japonica Extracts on Mouse Embryonic Fibroblast Cells)

  • 윤희정;고은비;최민선;김동일;성정석
    • 대한한방부인과학회지
    • /
    • 제25권2호
    • /
    • pp.78-88
    • /
    • 2012
  • Objectives: Paeonia japonica has been widely used for gynecopathy and analgesic effects in Korean Traditional Medicine. The aim of the present study is to determine the antioxidant effect of Paeonia japonica extracts(PJE) by using mouse embryonic fibroblast cells(MEF cells). Methods: We evaluated Radical Scavenging Activity of PJE by the DPPH assay. Protective effect of the PJE on the hydrogen peroxide($H_2O_2$) induced oxidative damage of MEF cells was analyzed by the MTT assay. The Morphological changes of MEF cells induced by P. japonica, $H_2O_2$ and P. japonica+$H_2O_2$ was evaluated by DAPI staining. And effect of PJE on the rate of apoptosis in MEF cells was measured using flow cytometry with Annexin V-FITC and PI double staining. Results: We observed that PJE contain significant DPPH radical scavenging activity. Cell viability of oxidative damaged cells treated with various concentrations of $H_2O_2$ was increased by treatment with PJE. Flow cytometric analysis of the cells treated with $H_2O_2$ in the absence or presence of PJE showed that the crumbled G1 peak was accumulated by the treatment with $H_2O_2$ alone, but restored by addition of PJE. Portion of cells that undergo apoptosis mediated by oxidative stress was decreased by treatment of PJE. The nuclear fragmentation occurred in the oxidative damaged MEF cells was also decreased by PJE treatment. Conclusions: Taken together, our results suggest that PJE exhibits significant antioxidant activity and functions to inhibit cell death mediated by oxidative damage induced apoptotic pathways.

자완 수추출물(水抽出物)이 $H_2O_2$에 의해 유도(誘導)된 PC-12 세포주(細胞株)의 세포사(細胞死)에 미치는 영향(影響) (Study of Apoptotic Effect on Hydrogen Peroxide-induced Rat PC-12 Cells by Aster tataricus Water Extract)

  • 신유정;김승모;박치상;신오철
    • 대한한의학회지
    • /
    • 제28권2호통권70호
    • /
    • pp.213-223
    • /
    • 2007
  • Objective : Alzheimer's disease (AD) is a geriatric dementia that is widespread in old age. With an aging populace, AD is a looming problem in public health service. Alzheimer's disease is characterized by specific neuronal degeneration in certain areas of the brain. Mutations and abnormal expression of several genes are associated with ${\beta}-amyloid$ deposits and Alzheimer's disease; among them APP, PS1, and PS2, SOD, free radical, ROS. Methods:We studied herbal medicines that have a relationship to brain degeneration. From pre-modern times, although a variety of oriental prescriptions of Aster tataricus have been traditionally utilized for the treatment of AD, their pharmacological effects and action mechanisms have not yet been fully elucidated. Result : Based on morphological observations by phase-contrast microscope, TUNEL assay and MTT in the culture media, $H_20_2-induced$ cell death was significantly inhibited by Aticus. We examined by ROS formation, catalase activity and GSH activity. We studied the protective effect and inhibitory effects of neurotoxicity in $H_20_2-induced$ PC-12 cells by Aticus. Findings from our experiments show that Aticus inhibits apoptosis, which has neurotoxicities and cell damage in PC-12 cells. In addition, treatment with Aticus ($>25{\mu}g/ml$ for 6hrs) partially prevented $H_20_2-induced$ cytotoxicity in PC-12 cells, and induced a protective effect. Conclusion : As the result of this study, in the Aticus group, the apoptosis in the nervous system was inhibited, protected against the degeneration of PC-12 cells by $H_20_2$. Taken together, Aticus exhibited inhibition of $H_20_2-induced$ apoptotic cell death. Aticus was found to induce protective effect on GSH and catalase in PC-12 cells. Based on these findings, Aticus may be beneficial for the treatment of AD.

  • PDF

Protective Effect of Ginsenoside R0 on Anoxic and Oxidative Damage In vitro

  • Jiang, Zhou;Wang, Yuhui;Zhang, Xiaoyun;Peng, Tao;Li, Yanqing;Zhang, Yi
    • Biomolecules & Therapeutics
    • /
    • 제20권6호
    • /
    • pp.544-549
    • /
    • 2012
  • To examine the neuroprotective effects of ginsenoside R0, we investigated the effects of ginsenoside R0 in PC12 cells under an anoxic or oxidative environment with Edaravone as a control. PC12 neuroendocrine cells were used as a model target. Anoxic damage or oxidative damage in PC12 cells were induced by adding sodium dithionite or hydrogen peroxide respectively in cultured medium. Survival ratios of different groups were detected by an AlamarBlue assay. At the same time, the apoptosis of PC12 cells were determined with flow cytometry. The putative neuroprotective effects of ginsenoside R0 is thought to be exerted through enhancing the activity of antioxidant enzymes Superoxide dismutases (SOD). The activity of SOD and the level of malondialdehyde (MDA) and intracellular reactive oxygen species (ROS), were measured to evaluate the protective and therapeutic effects of ginsenoside R0. Ginsenoside R0 treated cells had a higher SOD activity, lower MDA level and lower ROS, and their survival ratio was higher with a lower apoptosis rate. It is suggested that ginsenoside R0 has a protective effect in the cultured PC12 cells, and the protection efficiency is higher than Edaravone. The protective mechanisms of these two are different. The prevent ability of ginsenoside R0 is higher than its repair ability in neuroprotection in vitro.

파인엑솔이 과산화수소로 유도된 SK-N-MC 세포와 뇌졸중 백서 모델에서의 보호효과 (Protective Effect of PineXol® on Hydrogen Peroxide-induced Apoptosis on SK-N-MC Cells and Focal Ischemia Rodent Models)

  • 홍순오;한경훈;이승희;김도희;송관영;한성희
    • 한국식품영양학회지
    • /
    • 제29권6호
    • /
    • pp.923-929
    • /
    • 2016
  • The purpose of this study was to evaluate the protective effect of $PineXol^{(R)}$ on $H_2O_2$-induced cell death in SK-N-MC cells, and in early stage focal ischemia rodent model. SK-N-MC cells were pre-treated with $200{\mu}M$ $H_2O_2$ or various concentrations of $PineXol^{(R)}$ (10, 30, and 50 pg/mL) for 24 h, and then exposed to $H_2O_2$ for 3 h. Cell death was assessed by the CCK-8 assay, reactive oxygen species (ROS) assay, and lactate and dehydrogenase (LDH) release assay. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) expressions were also analyzed by western blotting. Focal ischemia rodent model was used as the in vivo model, and different concentrations of $PineXol^{(R)}$ (1, 10, and 100 mg/kg) were administered. One week after administration, reduction of infarct volume was analyzed by TTC staining. Cell viability of $H_2O_2$-treated SK-N-MC cells significantly increased by pre-treatment of $PineXol^{(R)}$ (p<0.05). $PineXol^{(R)}$ pre-treatment also induced significant decrease of ROS and LDH expressions. However, $PineXol^{(R)}$ did not affect the infarct volume. These results suggest that $PineXol^{(R)}$ has significant neuroprotective effect in vitro, but statistical significance was not confirmed in the in vivo focal ischemia model.

고장초의 부위별(뿌리, 줄기, 전초) Neuro2A 신경세포고사에 대한 억제 효과 비교 연구 (Comparative Study on the Inhibition Effect on Apoptosis in Neuro2A Cell on the Region of Zizania Latifolia(Radix, Rhizoma, Herba))

  • 차윤엽
    • 동의생리병리학회지
    • /
    • 제20권4호
    • /
    • pp.936-941
    • /
    • 2006
  • To prevent human body injury from oxidative stress, antioxidants are very important and many research about antioxidants are generally being conducted. Hydrogen peroxide$(H_20_2)$ that is one of vitality oxygen species has been seen that cause various diseases, DNA damage and gene change. We have already known that the inhibition effect of Zizania latifolia Radix, Rhizoma on apoptosis induced by $H_2O_2$ in Neuro2A cell. And the purpose of this study was that we made a comparative study on the inhibition effect of apoptosis in Neuro2A cell on the region of Zizania latifolia(Radix, Rhizoma, Herba). Neuro2A cells were cultivated in RPMI(GibcoBRL) with 5% FBS and treated with $H_2O_2$ and Zizania latifolia(Radix, Rhizoma, Herba). Separately we measured the cell viability and analyzed DNA fragmentation. Activity of PARP, Cytochrome C, caspase-9, caspase-3, p53, p21, Bax and Bcl-2 in the cell was examined by using western blot. The results obtained were as Follows: The cell viability in all of Zizania latifolia (Radix, Rhizoma, Herba) treatment (60ug/m1<) decreased significantly compared with that of none treatment(p<0.001). Zizania latifolia Radix increased cell viability was most effective of three regions. But we had no significant difference among three regions. All of Zizania latifolia (Radix, Rhizoma, Herba) increased cell viability about twice as much as that being injury by $H_2O_2$,(Zizania Latifolia (Radix, nhizoma, Herba) 20ug/m1, $H_2O_2$ 200uM, p<0.001). DNA fragmentation developed by $H_2O_2$, but was not developed in all of Zizania latifolia (Radix, Rhizoma, Herba) treatment. PARP, Cytochrome C, caspase-9 and caspase-3 activated all by $H_2O_2$ but were not activated in all of Zizania latifolia (Radix, Rhizoma, Herba) treatment. P53, P2l and Bax activated by $H_2O_2$, and Bcl-2 got into inactivation. But the opposite results appeared in all of Zizania latifolia (Radix, Rhizoma, Herba) treatment. In conclusion, these results suggest that all of Zizania latifolia (Radix, Rhizoma, Herba) inhibit the development of DNA fragmentation and apoptosis by $H_2O_2$and the antioridant action of all of Zizania latifolia (Radix, Rhizoma, Herba) is effective.

Remifentanil induces autophagy and prevents hydrogen peroxide-induced apoptosis in Cos-7 cells

  • Yoon, Ji-Young;Baek, Chul-Woo;Woo, Mi-Na;Kim, Eun-Jung;Yoon, Ji-Uk;Park, Chang-Hoon
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • 제16권3호
    • /
    • pp.175-184
    • /
    • 2016
  • Background: This study investigated the effect of remifentanil pretreatment on Cos-7 cells exposed to oxidative stress, and the influence of remifentanil on intracellular autophagy and apoptotic cell death. Methods: Cells were divided into 4 groups: (1) Control: non-pretreated cells were incubated in normoxia (5% $CO_2$, 21% $O_2$, and 74% $N_2$). (2) $H_2O_2$: non-pretreated cells were exposed to $H_2O_2$ for 24 h. (3) RPC+$H_2O_2$: cells pretreated with remifentanil were exposed to $H_2O_2$ for 24 h. (4) 3-MA+RPC+$H_2O_2$: cells pretreated with 3-Methyladenine (3-MA) and remifentanil were exposed to $H_2O_2$ for 24 h. We determined the cell viability of each group using an MTT assay. Hoechst staining and FACS analysis of Cos-7 cells were performed to observe the effect of remifentanil on apoptosis. Autophagy activation was determined by fluorescence microscopy, MDC staining, and AO staining. The expression of autophagy-related proteins was observed using western blotting. Results: Remifentanil pretreatment increased the viability of Cos-7 cells exposed to oxidative stress. Hoechst staining and FACS analysis revealed that oxidative stress-dependent apoptosis was suppressed by the pretreatment. Additionally, fluorescence microscopy showed that remifentanil pretreatment led to autophagy-induction in Cos-7 cells, and the expression of autophagy-related proteins was increased in the RPC+$H_2O_2$ group. Conclusions: The study showed that remifentanil pretreatment stimulated autophagy and increased viability in an oxidative stress model of Cos-7 cells. Therefore, we suggest that apoptosis was activated upon oxidative stress, and remifentanil preconditioning increased the survival rate of the cells by activating autophagy.

Effects of propofol-induced autophagy against oxidative stress in human osteoblasts

  • Kim, Eun-Jung;Choi, In-Seok;Yoon, Ji-Young;Park, Bong-Soo;Yoon, Ji-Uk;Kim, Cheul-Hong
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • 제16권1호
    • /
    • pp.39-47
    • /
    • 2016
  • Background: Oxidative stress occurs during the aging process and other conditions such as bone fracture, bone diseases, and osteoporosis, but the role of oxidative stress in bone remodeling is unknown. Propofol exerts antioxidant effects, but the mechanisms of propofol preconditioning on oxidative stress have not been fully explained. Therefore, the aim of this study was to evaluate the protective effects of propofol against $H_2O_2$-induced oxidative stress on a human fetal osteoblast (hFOB) cell line via activation of autophagy. Methods: Cells were randomly divided into the following groups: control cells were incubated in normoxia (5% $CO_2$, 21% $O_2$, and 74% $N_2$) without propofol. Hydrogen peroxide ($H_2O_2$) group cells were exposed to $H_2O_2\;(200{\mu}M)$ for 2 h, propofol preconditioning (PPC)/$H_2O_2$ group cells were pretreated with propofol then exposed to $H_2O_2$, 3-methyladenine (3-MA)/PPC/$H_2O_2$ cells were pretreated with 3-MA (1 mM) and propofol, then were exposed to $H_2O_2$. Cell viability and apoptosis were evaluated. Osteoblast maturation was determined by assaying bone nodular mineralization. Expression levels of bone related proteins were determined by western blot. Results: Cell viability and bone nodular mineralization were decreased significantly by $H_2O_2$, and this effect was rescued by propofol preconditioning. Propofol preconditioning effectively decreased $H_2O_2$-induced hFOB cell apoptosis. However, pretreatment with 3-MA inhibited the protective effect of propofol. In western blot analysis, propofol preconditioning increased protein levels of collagen type I, BMP-2, osterix, and TGF-${\beta}1$. Conclusions: This study suggests that propofol preconditioning has a protective effect on $H_2O_2$-induced hFOB cell death, which is mediated by autophagy activation.