References
- Ameziane-El-Hassani, R., Morand, S., Boucher, J. L., Frapart, Y. M., Apostolou, D., Agnandji, D., Gnidehou, S., Ohayon, R., Noel-Hudson, M. S., Francon, J., Lalaoui, K., Virion, A. and Dupuy, C. (2005) Dual oxidase-2 has an intrinsic Ca2+-dependent H2O2-generating activity. J. Biol. Chem. 280, 30046-30054. https://doi.org/10.1074/jbc.M500516200
- Aoyama, T., Paik, Y. H., Watanabe, S., Laleu, B., Gaggini, F., Fioraso-Cartier, L., Molango, S., Heitz, F., Merlot, C., Szyndralewiez, C., Page, P. and Brenner, D. A. (2012) Nicotinamide adenine dinucleotide phosphate oxidase in experimental liver fibrosis: GKT137831 as a novel potential therapeutic agent. Hepatology 56, 2316-2327. https://doi.org/10.1002/hep.25938
- Badal, S. S. and Danesh, F. R. (2014) New insights into molecular mechanisms of diabetic kidney disease. Am. J. Kidney Dis. 63, S63-S83. https://doi.org/10.1053/j.ajkd.2013.10.047
- Bae, Y. S., Oh, H., Rhee, S. G. and Yoo, Y. D. (2011) Regulation of reactive oxygen species generation in cell signaling. Mol. Cells 32, 491-509. https://doi.org/10.1007/s10059-011-0276-3
- Banfi, B., Malgrange, B., Knisz, J., Steger, K., Dubois-Dauphin, M. and Krause, K. H. (2004a) NOX3, a superoxide-generating NADPH oxidase of the inner ear. J. Biol. Chem. 279, 46065-46072. https://doi.org/10.1074/jbc.M403046200
- Banfi, B., Molnar, G., Maturana, A., Steger, K., Hegedus, B., Demaurex, N. and Krause, K. H. (2001) A Ca(2+)-activated NADPH oxidase in testis, spleen, and lymph nodes. J. Biol. Chem. 276, 37594-37601. https://doi.org/10.1074/jbc.M103034200
- Banfi, B., Tirone, F., Durussel, I., Knisz, J., Moskwa, P., Molnar, G. Z., Krause, K. H. and Cox, J. A. (2004b) Mechanism of Ca2+ activation of the NADPH oxidase 5 (NOX5). J. Biol. Chem. 279, 18583-18591. https://doi.org/10.1074/jbc.M310268200
- Bedard, K. and Krause, K. H. (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87, 245-313. https://doi.org/10.1152/physrev.00044.2005
- Block, K. and Gorin, Y. (2012) Aiding and abetting roles of NOX oxidases in cellular transformation. Nat. Rev. Cancer 12, 627-637. https://doi.org/10.1038/nrc3339
- Bokoch, G. M. and Zhao, T. (2006) Regulation of the phagocyte NADPH oxidase by Rac GTPase. Antioxid. Redox Signal. 8, 1533-1548. https://doi.org/10.1089/ars.2006.8.1533
- Caramori, M. L., Parks, A. and Mauer, M. (2013) Renal lesions predict progression of diabetic nephropathy in type 1 diabetes. J. Am. Soc. Nephrol. 24, 1175-1181. https://doi.org/10.1681/ASN.2012070739
- Cha, J. J., Min, H. S., Kim, K. T., Kim, J. E., Ghee, J. Y., Kim, H. W., Lee, J. E., Han, J. Y., Lee, G., Ha, H. J., Bae, Y. S., Lee, S. R., Moon, S. H., Lee, S. C., Kim, G., Kang, Y. S. and Cha, D. R. (2017) APX-115, a first-in-class pan-NADPH oxidase (Nox) inhibitor, protects db/db mice from renal injury. Lab. Invest. 97, 419-431. https://doi.org/10.1038/labinvest.2017.2
- Chance, B., Sies, H. and Boveris, A. (1979) Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59, 527-605. https://doi.org/10.1152/physrev.1979.59.3.527
- Cheng, G., Diebold, B. A., Hughes, Y. and Lambeth, J. D. (2006) Nox1-dependent reactive oxygen generation is regulated by Rac1. J. Biol. Chem. 281, 17718-17726. https://doi.org/10.1074/jbc.M512751200
- Cheng, G., Ritsick, D. and Lambeth, J. D. (2004) Nox3 regulation by NOXO1, p47phox, and p67phox. J. Biol. Chem. 279, 34250-34255. https://doi.org/10.1074/jbc.M400660200
- Choi, H., Leto, T. L., Hunyady, L., Catt, K. J., Bae, Y. S. and Rhee, S. G. (2008) Mechanism of angiotensin II-induced superoxide production in cells reconstituted with angiotensin type 1 receptor and the components of NADPH oxidase. J. Biol. Chem. 283, 255-267. https://doi.org/10.1074/jbc.M708000200
- Dorotea, D., Kwon, G., Lee, J. H., Saunders, E., Bae, Y. S., Moon, S. H., Lee, S. J., Cha, D. R. and Ha, H. (2018) A pan-NADPH oxidase inhibitor ameliorates kidney injury in type 1 diabetic rats. Pharmacology 102, 180-189. https://doi.org/10.1159/000491398
- Dutta, S. and Rittinger, K. (2010) Regulation of NOXO1 activity through reversible interactions with p22(phox) and NOXA1. PLoS ONE 5, e10478. https://doi.org/10.1371/journal.pone.0010478
- Finegold, A. A., Shatwell, K. P., Segal, A. W., Klausner, R. D. and Dancis, A. (1996) Intramembrane bis-heme motif for transmembrane electron transport conserved in a yeast iron reductase and the human NADPH oxidase. J. Biol. Chem. 271, 31021-31024. https://doi.org/10.1074/jbc.271.49.31021
- Forbes, J. M. and Cooper, M. E. (2013) Mechanisms of diabetic complications. Physiol. Rev. 93, 137-188. https://doi.org/10.1152/physrev.00045.2011
- Forbes, J. M., Cooper, M. E., Oldfield, M. D. and Thomas, M. C. (2003) Role of advanced glycation end products in diabetic nephropathy. J. Am. Soc. Nephrol. 14, S254-S258. https://doi.org/10.1097/01.ASN.0000077413.41276.17
- Gaggini, F., Laleu, B., Orchard, M., Fioraso-Cartier, L., Cagnon, L., Houngninou-Molango, S., Gradia, A., Duboux, G., Merlot, C., Heitz, F., Szyndralewiez, C. and Page, P. (2011) Design, synthesis and biological activity of original pyrazolo-pyrido-diazepine,-pyrazine and-oxazine dione derivatives as novel dual Nox4/Nox1 inhibitors. Bioorg. Med. Chem. 19, 6989-6999. https://doi.org/10.1016/j.bmc.2011.10.016
- Geiszt, M., Lekstrom, K., Witta, J. and Leto, T. L. (2003) Proteins homologous to p47phox and p67phox support superoxide production by NAD(P)H oxidase 1 in colon epithelial cells. J. Biol. Chem. 278, 20006-20012. https://doi.org/10.1074/jbc.M301289200
- Gorin, Y., Cavaglieri, R. C., Khazim, K., Lee, D. Y., Bruno, F., Thakur, S., Fanti, P., Szyndralewiez, C., Barnes, J. L., Block, K. and Abboud, H. E. (2015) Targeting NADPH oxidase with a novel dual Nox1/Nox4 inhibitor attenuates renal pathology in type 1 diabetes. Am. J. Physiol. Renal Physiol. 308, F1276-F1287. https://doi.org/10.1152/ajprenal.00396.2014
- Green, D. E., Murphy, T. C., Kang, B. Y., Kleinhenz, J. M., Szyndralewiez, C., Page, P., Sutliff, R. L. and Hart, C. M. (2012) The Nox4 inhibitor GKT137831 attenuates hypoxia-induced pulmonary vascular cell proliferation. Am. J. Respir. Cell Mol. Biol. 47, 718-726. https://doi.org/10.1165/rcmb.2011-0418OC
- Groemping, Y., Lapouge, K., Smerdon, S. J. and Rittinger, K. (2003) Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Cell 113, 343-355. https://doi.org/10.1016/S0092-8674(03)00314-3
- Heng, L. Z., Comyn, O., Peto, T., Tadros, C., Ng, E., Sivaprasad, S. and Hykin, P. G. (2013) Diabetic retinopathy: pathogenesis, clinical grading, management and future developments. Diabet. Med. 30, 640-650. https://doi.org/10.1111/dme.12089
- Hofmann, M. A., Drury, S., Fu, C., Qu, W., Taguchi, A., Lu, Y., Avila, C., Kambham, N., Bierhaus, A., Nawroth, P., Neurath, M. F., Slattery, T., Beach, D., McClary, J., Nagashima, M., Morser, J., Stern, D. and Schmidt, A. M. (1999) RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97, 889-901. https://doi.org/10.1016/S0092-8674(00)80801-6
- Holterman, C. E., Read, N. C. and Kennedy, C. R. (2015) Nox and renal disease. Clin. Sci. (Lond.) 128, 465-481. https://doi.org/10.1042/CS20140361
- Jha, J. C., Banal, C., Chow, B. S., Cooper, M. E. and Jandeleit-Dahm, K. (2016) Diabetes and kidney disease: role of oxidative stress. Antioxid. Redox Signal. 25, 657-684. https://doi.org/10.1089/ars.2016.6664
- Jha, J. C., Gray, S. P., Barit, D., Okabe, J., El-Osta, A., Namikoshi, T., Thallas-Bonke, V., Wingler, K., Szyndralewiez, C., Heitz, F., Touyz, R. M., Cooper, M. E., Schmidt, H. H. and Jandeleit-Dahm, K. A. (2014) Genetic targeting or pharmacologic inhibition of NADPH oxidase nox4 provides renoprotection in long-term diabetic nephropathy. J. Am. Soc. Nephrol. 25, 1237-1254. https://doi.org/10.1681/ASN.2013070810
- Jiang, F., Liu, G. S., Dusting, G. J. and Chan, E. C. (2014) NADPH oxidase-dependent redox signaling in TGF-beta-mediated fibrotic responses. Redox. Biol. 2, 267-272. https://doi.org/10.1016/j.redox.2014.01.012
- Joo, J. H., Oh, H., Kim, M., An, E. J., Kim, R. K., Lee, S. Y., Kang, D. H., Kang, S. W., Keun Park, C., Kim, H., Lee, S. J., Lee, D., Seol, J. H. and Bae, Y. S. (2016) NADPH oxidase 1 activity and ROS generation are regulated by Grb2/Cbl-mediated proteasomal degradation of NoxO1 in colon cancer cells. Cancer Res. 76, 855-865. https://doi.org/10.1158/0008-5472.CAN-15-1512
- Kawahara, T., Ritsick, D., Cheng, G. and Lambeth, J. D. (2005) Point mutations in the proline-rich region of p22phox are dominant inhibitors of Nox1-and Nox2-dependent reactive oxygen generation. J. Biol. Chem. 280, 31859-31869. https://doi.org/10.1074/jbc.M501882200
- Khan, A., Petropoulos, I. N., Ponirakis, G. and Malik, R. A. (2017) Visual complications in diabetes mellitus: beyond retinopathy. Diabet. Med. 34, 478-484. https://doi.org/10.1111/dme.13296
- Kikuchi, H., Hikage, M., Miyashita, H. and Fukumoto, M. (2000) NADPH oxidase subunit, gp91(phox) homologue, preferentially expressed in human colon epithelial cells. Gene 254, 237-243. https://doi.org/10.1016/S0378-1119(00)00258-4
- Ko, E., Choi, H., Kim, B., Kim, M., Park, K. N., Bae, I. H., Sung, Y. K., Lee, T. R., Shin, D. W. and Bae, Y. S. (2014) Testosterone stimulates Duox1 activity through GPRC6A in skin keratinocytes. J. Biol. Chem. 289, 28835-28845. https://doi.org/10.1074/jbc.M114.583450
- Koya, D., Haneda, M., Nakagawa, H., Isshiki, K., Sato, H., Maeda, S., Sugimoto, T., Yasuda, H., Kashiwagi, A., Ways, D. K., King, G. L. and Kikkawa, R. (2000) Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC beta inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes. FASEB J. 14, 439-447. https://doi.org/10.1096/fasebj.14.3.439
- Kudin, A. P., Bimpong-Buta, N. Y., Vielhaber, S., Elger, C. E. and Kunz, W. S. (2004) Characterization of superoxide-producing sites in isolated brain mitochondria. J. Biol. Chem. 279, 4127-4135. https://doi.org/10.1074/jbc.M310341200
- Kwon, G., Uddin, M. J., Lee, G., Jiang, S., Cho, A., Lee, J. H., Lee, S. R., Bae, Y. S., Moon, S. H., Lee, S. J., Cha, D. R. and Ha, H. (2017) A novel pan-Nox inhibitor, APX-115, protects kidney injury in streptozotocin-induced diabetic mice: possible role of peroxisomal and mitochondrial biogenesis. Oncotarget 8, 74217-74232. https://doi.org/10.18632/oncotarget.18540
- Lal, M. A., Brismar, H., Eklof, A. C. and Aperia, A. (2002) Role of oxidative stress in advanced glycation end product-induced mesangial cell activation. Kidney Int. 61, 2006-2014. https://doi.org/10.1046/j.1523-1755.2002.00367.x
- Laleu, B., Gaggini, F., Orchard, M., Fioraso-Cartier, L., Cagnon, L., Houngninou-Molango, S., Gradia, A., Duboux, G., Merlot, C., Heitz, F., Szyndralewiez, C. and Page, P. (2010) First in class, potent, and orally bioavailable NADPH oxidase isoform 4 (Nox4) inhibitors for the treatment of idiopathic pulmonary fibrosis. J. Med. Chem. 53, 7715-7730. https://doi.org/10.1021/jm100773e
- Lambeth, J. D. and Neish, A. S. (2014) Nox enzymes and new thinking on reactive oxygen: a double-edged sword revisited. Annu. Rev. Pathol. 9, 119-145. https://doi.org/10.1146/annurev-pathol-012513-104651
- Lassegue, B., San Martin, A. and Griendling, K. K. (2012) Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ. Res. 110, 1364-1390. https://doi.org/10.1161/CIRCRESAHA.111.243972
- Lassegue, B., Sorescu, D., Szocs, K., Yin, Q., Akers, M., Zhang, Y., Grant, S. L., Lambeth, J. D. and Griendling, K. K. (2001) Novel gp91(phox) homologues in vascular smooth muscle cells: nox1 mediates angiotensin II-induced superoxide formation and redoxsensitive signaling pathways. Circ. Res. 88, 888-894. https://doi.org/10.1161/hh0901.090299
- Lee, J. H., Joo, J. H., Kim, J., Lim, H. J., Kim, S., Curtiss, L., Seong, J. K., Cui, W., Yabe-Nishimura, C. and Bae, Y. S. (2013) Interaction of NADPH oxidase 1 with Toll-like receptor 2 induces migration of smooth muscle cells. Cardiovasc. Res. 99, 483-493. https://doi.org/10.1093/cvr/cvt107
- Lee, M. Y., San Martin, A., Mehta, P. K., Dikalova, A. E., Garrido, A. M., Datla, S. R., Lyons, E., Krause, K. H., Banfi, B., Lambeth, J. D., Lassegue, B. and Griendling, K. K. (2009) Mechanisms of vascular smooth muscle NADPH oxidase 1 (Nox1) contribution to injuryinduced neointimal formation. Arterioscler. Thromb. Vasc. Biol. 29, 480-487. https://doi.org/10.1161/ATVBAHA.108.181925
- Leto, T. L., Morand, S., Hurt, D. and Ueyama, T. (2009) Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxid. Redox Signal. 11, 2607-2619. https://doi.org/10.1089/ars.2009.2637
- Lv, M., Chen, Z., Hu, G. and Li, Q. (2015) Therapeutic strategies of diabetic nephropathy: recent progress and future perspectives. Drug Discov. Today 20, 332-346. https://doi.org/10.1016/j.drudis.2014.10.007
- Lyle, A. N., Deshpande, N. N., Taniyama, Y., Seidel-Rogol, B., Pounkova, L., Du, P., Papaharalambus, C., Lassegue, B. and Griendling, K. K. (2009) Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells. Circ. Res. 105, 249-259. https://doi.org/10.1161/CIRCRESAHA.109.193722
- Mason, R. M. and Wahab, N. A. (2003) Extracellular matrix metabolism in diabetic nephropathy. J. Am. Soc. Nephrol. 14, 1358-1373. https://doi.org/10.1097/01.ASN.0000065640.77499.D7
- Molitch, M. E., DeFronzo, R. A., Franz, M. J., Keane, W. F., Mogensen, C. E., Parving, H. H., Steffes, M. W. and American Diabetes, A. (2004) Nephropathy in diabetes. Diabetes Care 27, S79-S83. https://doi.org/10.2337/diacare.27.2007.S79
- Neumann, A., Schinzel, R., Palm, D., Riederer, P. and Munch, G. (1999) High molecular weight hyaluronic acid inhibits advanced glycation endproduct-induced NF-kappaB activation and cytokine expression. FEBS Lett. 453, 283-287. https://doi.org/10.1016/S0014-5793(99)00731-0
- Nishikawa, T., Edelstein, D., Du, X. L., Yamagishi, S., Matsumura, T., Kaneda, Y., Yorek, M. A., Beebe, D., Oates, P. J., Hammes, H. P., Giardino, I. and Brownlee, M. (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404, 787-790. https://doi.org/10.1038/35008121
- Osicka, T. M., Yu, Y., Panagiotopoulos, S., Clavant, S. P., Kiriazis, Z., Pike, R. N., Pratt, L. M., Russo, L. M., Kemp, B. E., Comper, W. D. and Jerums, G. (2000) Prevention of albuminuria by aminoguanidine or ramipril in streptozotocin-induced diabetic rats is associated with the normalization of glomerular protein kinase C. Diabetes 49, 87-93. https://doi.org/10.2337/diabetes.49.1.87
- Palatini, P. (2012) Glomerular hyperfiltration: a marker of early renal damage in pre-diabetes and pre-hypertension. Nephrol. Dial. Transplant. 27, 1708-1714. https://doi.org/10.1093/ndt/gfs037
- Papadopoulou-Marketou, N., Chrousos, G. P. and Kanaka-Gantenbein, C. (2017) Diabetic nephropathy in type 1 diabetes: a review of early natural history, pathogenesis, and diagnosis. Diabetes Metab. Res. Rev. 33, doi: 10.1002/dmrr.2841.
- Park, H. S., Park, D. and Bae, Y. S. (2006) Molecular interaction of NADPH oxidase 1 with betaPix and nox organizer 1. Biochem. Biophys. Res. Commun. 339, 985-990. https://doi.org/10.1016/j.bbrc.2005.11.108
- Reidy, K., Kang, H. M., Hostetter, T. and Susztak, K. (2014) Molecular mechanisms of diabetic kidney disease. J. Clin. Invest. 124, 2333-2340. https://doi.org/10.1172/JCI72271
- Rocco, M. V. and Berns, J. S. (2009) KDOQI in the era of global guidelines. Am. J. Kidney Dis. 54, 781-787. https://doi.org/10.1053/j.ajkd.2009.08.001
- Said, G. (2007) Diabetic neuropathy--a review. Nat. Clin. Pract. Neurol. 3, 331-340. https://doi.org/10.1038/ncpneuro0504
- Schmidt, A. M., Hori, O., Chen, J. X., Li, J. F., Crandall, J., Zhang, J., Cao, R., Yan, S. D., Brett, J. and Stern, D. (1995) Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J. Clin. Invest. 96, 1395-1403. https://doi.org/10.1172/JCI118175
- Schroder, K., Helmcke, I., Palfi, K., Krause, K. H., Busse, R. and Brandes, R. P. (2007) Nox1 mediates basic fibroblast growth factor-induced migration of vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 27, 1736-1743. https://doi.org/10.1161/ATVBAHA.107.142117
- Segal, A. W., West, I., Wientjes, F., Nugent, J. H., Chavan, A. J., Haley, B., Garcia, R. C., Rosen, H. and Scrace, G. (1992) Cytochrome b-245 is a flavocytochrome containing FAD and the NADPH-binding site of the microbicidal oxidase of phagocytes. Biochem. J. 284, 781-788. https://doi.org/10.1042/bj2840781
- Silbiger, S., Crowley, S., Shan, Z., Brownlee, M., Satriano, J. and Schlondorff, D. (1993) Nonenzymatic glycation of mesangial matrix and prolonged exposure of mesangial matrix to elevated glucose reduces collagen synthesis and proteoglycan charge. Kidney Int. 43, 853-864. https://doi.org/10.1038/ki.1993.120
- Singh, V. P., Bali, A., Singh, N. and Jaggi, A. S. (2014) Advanced glycation end products and diabetic complications. Korean J. Physiol. Pharmacol. 18, 1-14. https://doi.org/10.4196/kjpp.2014.18.1.1
- Suh, Y. A., Arnold, R. S., Lassegue, B., Shi, J., Xu, X., Sorescu, D., Chung, A. B., Griendling, K. K. and Lambeth, J. D. (1999) Cell transformation by the superoxide-generating oxidase Mox1. Nature 401, 79-82. https://doi.org/10.1038/43459
- Sumimoto, H. (2008) Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J. 275, 3984. https://doi.org/10.1111/j.1742-4658.2008.06546.x
- Sumimoto, H., Hata, K., Mizuki, K., Ito, T., Kage, Y., Sakaki, Y., Fukumaki, Y., Nakamura, M. and Takeshige, K. (1996) Assembly and activation of the phagocyte NADPH oxidase. Specific interaction of the N-terminal Src homology 3 domain of p47phox with p22phox is required for activation of the NADPH oxidase. J. Biol. Chem. 271, 22152-22158. https://doi.org/10.1074/jbc.271.36.22152
- Sumimoto, H., Sakamoto, N., Nozaki, M., Sakaki, Y., Takeshige, K. and Minakami, S. (1992) Cytochrome b558, a component of the phagocyte NADPH oxidase, is a flavoprotein. Biochem. Biophys. Res. Commun. 186, 1368-1375. https://doi.org/10.1016/S0006-291X(05)81557-8
- Tervaert, T. W., Mooyaart, A. L., Amann, K., Cohen, A. H., Cook, H. T., Drachenberg, C. B., Ferrario, F., Fogo, A. B., Haas, M., de Heer, E., Joh, K., Noel, L. H., Radhakrishnan, J., Seshan, S. V., Bajema, I. M., Bruijn, J. A. and Renal Pathology, S. (2010) Pathologic classification of diabetic nephropathy. J. Am. Soc. Nephrol. 21, 556-563. https://doi.org/10.1681/ASN.2010010010
- Thallas-Bonke, V., Thorpe, S. R., Coughlan, M. T., Fukami, K., Yap, F. Y., Sourris, K. C., Penfold, S. A., Bach, L. A., Cooper, M. E. and Forbes, J. M. (2008) Inhibition of NADPH oxidase prevents advanced glycation end product-mediated damage in diabetic nephropathy through a protein kinase C-alpha-dependent pathway. Diabetes 57, 460-469. https://doi.org/10.2337/db07-1119
- Thomas, M. C., Brownlee, M., Susztak, K., Sharma, K., Jandeleit-Dahm, K. A., Zoungas, S., Rossing, P., Groop, P. H. and Cooper, M. E. (2015) Diabetic kidney disease. Nat. Rev. Dis. Primers 1, 15018. https://doi.org/10.1038/nrdp.2015.18
- Thomas, M. C., Weekes, A. J., Broadley, O. J., Cooper, M. E. and Mathew, T. H. (2006) The burden of chronic kidney disease in Australian patients with type 2 diabetes (the NEFRON study). Med. J. Aust. 185, 140-144. https://doi.org/10.5694/j.1326-5377.2006.tb00499.x
- Ueno, N., Takeya, R., Miyano, K., Kikuchi, H. and Sumimoto, H. (2005) The NADPH oxidase Nox3 constitutively produces superoxide in a p22phox-dependent manner: its regulation by oxidase organizers and activators. J. Biol. Chem. 280, 23328-23339. https://doi.org/10.1074/jbc.M414548200
- Ueyama, T., Geiszt, M. and Leto, T. L. (2006) Involvement of Rac1 in activation of multicomponent Nox1-and Nox3-based NADPH oxidases. Mol. Cell. Biol. 26, 2160-2174. https://doi.org/10.1128/MCB.26.6.2160-2174.2006
- Vinik, A. I., Nevoret, M. L., Casellini, C. and Parson, H. (2013) Diabetic neuropathy. Endocrinol. Metab. Clin. North Am. 42, 747-787. https://doi.org/10.1016/j.ecl.2013.06.001
- Wingler, K., Wunsch, S., Kreutz, R., Rothermund, L., Paul, M. and Schmidt, H. H. (2001) Upregulation of the vascular NAD(P)H-oxidase isoforms Nox1 and Nox4 by the renin-angiotensin system in vitro and in vivo. Free Radic. Biol. Med. 31, 1456-1464. https://doi.org/10.1016/S0891-5849(01)00727-4
- Xu, Y., Ruan, S., Xie, H. and Lin, J. (2010) Role of LOX-1 in Ang II-induced oxidative functional damage in renal tubular epithelial cells. Int. J. Mol. Med. 26, 679-690.
- Yang, Y., Zhang, Y., Cuevas, S., Villar, V. A., Escano, C., L, D. A., Yu, P., Grandy, D. K., Felder, R. A., Armando, I. and Jose, P. A. (2012) Paraoxonase 2 decreases renal reactive oxygen species production, lowers blood pressure, and mediates dopamine D2 receptor-induced inhibition of NADPH oxidase. Free Radic. Biol. Med. 53, 437-446. https://doi.org/10.1016/j.freeradbiomed.2012.05.015
- Yu, P., Han, W., Villar, V. A., Yang, Y., Lu, Q., Lee, H., Li, F., Quinn, M. T., Gildea, J. J., Felder, R. A. and Jose, P. A. (2014) Unique role of NADPH oxidase 5 in oxidative stress in human renal proximal tubule cells. Redox Biol. 2, 570-579. https://doi.org/10.1016/j.redox.2014.01.020
Cited by
- FOXO3a accumulation and activation accelerate oxidative stress‐induced podocyte injury vol.34, pp.10, 2020, https://doi.org/10.1096/fj.202000783r
- On the Clinical Pharmacology of Reactive Oxygen Species vol.72, pp.4, 2020, https://doi.org/10.1124/pr.120.019422
- Pathophysiology and Therapeutic Potential of NADPH Oxidases in Ischemic Stroke-Induced Oxidative Stress vol.2021, 2021, https://doi.org/10.1155/2021/6631805
- Terminalia catappa Extract Palliates Redox Imbalance and Inflammation in Diabetic Rats by Upregulating Nrf-2 Gene vol.2021, 2020, https://doi.org/10.1155/2021/9778486
- NADH/NAD+ Redox Imbalance and Diabetic Kidney Disease vol.11, pp.5, 2021, https://doi.org/10.3390/biom11050730
- Prominent and emerging anti-diabetic molecular targets vol.29, pp.5, 2021, https://doi.org/10.1080/1061186x.2020.1859517
- Roles and Therapeutic Implications of Endoplasmic Reticulum Stress and Oxidative Stress in Cardiovascular Diseases vol.10, pp.8, 2020, https://doi.org/10.3390/antiox10081167
- A natural product of acteoside ameliorate kidney injury in diabetes db/db mice and HK‐2 cells via regulating NADPH/oxidase‐TGF‐β/Smad signaling pathway vol.35, pp.9, 2020, https://doi.org/10.1002/ptr.7196
- Activated Histone Acetyltransferase p300/CBP-Related Signalling Pathways Mediate Up-Regulation of NADPH Oxidase, Inflammation, and Fibrosis in Diabetic Kidney vol.10, pp.9, 2020, https://doi.org/10.3390/antiox10091356