• Title/Summary/Keyword: Hydraulic Turbine

Search Result 218, Processing Time 0.034 seconds

Effect of air inflow on the performance of a 50kW-class cross-flow turbine (50kW급 횡류수차 내 공기 유입이 성능에 미치는 영향)

  • Kim, Jun-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.418-423
    • /
    • 2014
  • Small hydropower has been considered as a solution to resolve the problem of exhaustion of fossil fuel and industrial pollution. In this study, we developed and tested a Cross-Flow Turbine with two guide vanes to optimize the small hydropower for the site condition with large fluctuation of head and flow rate. Furthermore, in the condition of constant inlet head, CFD analysis was carried out to analyze the effect of air suction and valve position on the performance characteristics. The results showed that the air suction can minimize the hydraulic loss caused by the Recirculation flow in the runner passage and flow impact on main shaft so that it can increase the turbine efficiency and output power.

Low-Load/Low-Eccentricity Performance Improvement Designs for Hydro Power Application of Cylindrical Turbine Guide Bearings - Introduction of Pad Leading-Edge Tapers (수력 원통형 터빈 가이드 베어링의 저부하/저편심 성능향상 설계 - 패드 선단 테이퍼의 도입)

  • Lee, An Sung;Jang, Sun-Yong
    • Tribology and Lubricants
    • /
    • v.33 no.2
    • /
    • pp.65-70
    • /
    • 2017
  • In vertical hydro/hydraulic power turbine-generator applications, traditionally, cylindrical turbine guide bearings (TGBs) are widely used to provide turbine runner shafts with smooth rotation guides and supports. All existing cylindrical TGBs with simple plain pads have drawbacks such as having no pressure generation and film stiffness at the no-load condition and in addition, at the low-load/low-eccentricity condition, having very low film stiffness values and lacking design credibility in the stiffness values themselves. In this paper, in order to fundamentally improve the low-load/low-eccentricity performance of conventional cylindrical TGBs and thus enhance their design-application availability and usefulness, we propose to introduce a rotation-directional leading-edge taper to each partitioned pad, i.e., a pad leading-edge taper. We perform a design analysis of lubrication performance on $4-Pad{\times}4-Row$ cylindrical TGBs to verify an engineering/technical usefulness of the proposed pad leading-edge taper. Analysis results show that by introducing the leading-edge taper to each pad of the cylindrical TGB one can expect a constant high average direct stiffness with a high degree of design credibility, regardless of load value, even at the low-load/low-eccentricity condition and also control the average direct stiffness value by exploring the taper height as a design parameter. Therefore, we conclude that the proposed pad leading-edge tapers are greatly effective in more accurately predicting and controlling rotordynamic characteristics of vertical hydro-power turbine-generator rotor-bearing systems to which cylindrical TGBs are applied.

Study of a Model Turbine Design Case Via Application of Spiral Case and Draft Tube Shape in Hydraulic Power Plant Modernization (수력 현대화 개·대체 시 스파이럴 케이스와 흡출관 형상에 따른 모델수차 설계 적용사례 연구)

  • Park, Nohyun;Kim, Jin-Hyuk;Kim, Seung-Jun;Hyun, Jungjae;Choi, Jongwoong;Cho, Yong
    • New & Renewable Energy
    • /
    • v.16 no.2
    • /
    • pp.35-46
    • /
    • 2020
  • Recently, turbines operating in hydro power plants are required to undergo renovation and modernization due to their age exceeding 30 years. In the process of renovation or modernization, a performance test of the scaled-down model is necessary to verify the performance of the real-size model. This model test method, with criteria that is similar to that of a real turbine, is the most economical and important method. Furthermore, the shapes of the runner and guide vane can be modified or replaced easily. However, during the process of modernization, the components with the spiral casing and draft tube are impossible to repair or replace because of the buried ground. Thus, in this study, numerical analysis is conducted to investigate the hydraulic performance based on the difference between the two-dimensional computer-aided design (CAD) shape and the real three-dimensional scan shape of the spiral casing and draft tube.

HORIZON EXPANSION OF THERMAL-HYDRAULIC ACTIVITIES INTO HTGR SAFETY ANALYSIS INCLUDING GAS-TURBINE CYCLE AND HYDROGEN PLANT

  • No, Hee-Cheon;Yoon, Ho-Joon;Kim, Seung-Jun;Lee, Byeng-Jin;Kim, Ji-Hwang;Kim, Hyeun-Min;Lim, Hong-Sik
    • Nuclear Engineering and Technology
    • /
    • v.41 no.7
    • /
    • pp.875-884
    • /
    • 2009
  • We present three nuclear/hydrogen-related R&D activities being performed at KAIST: air-ingressed LOCA analysis code development, gas turbine analysis tool development, and hydrogen-production system analysis model development. The ICE numerical technique widely used for the safety analysis of water-reactors is successfully implemented into GAMMA, with which we solve the basic equations for continuity, momentum conservation, energy conservation of the gas mixture, and mass conservation of 6 species (He, N2, O2, CO, CO2, and H2O). GAMMA has been extensively validated using data from 14 test facilities. We developed a tool to predict the characteristics of HTGR helium turbines based on the throughflow calculation with a Newton-Raphson method that overcomes the weakness of the conventional method based on the successive iteration scheme. It is found that the current method reaches stable and quick convergence even under the off-normal condition with the same degree of accuracy. The dynamic equations for the distillation column of HI process are described with 4 material components involved in the HI process: H2O, HI, I2, H2. For the HI process we improved the Neumann model based on the NRTL (Non-Random Two-Liquid) model. The improved Neumann model predicted a total pressure with 8.6% maximum relative deviation from the data and 2.5% mean relative deviation, and liquid-liquid-separation with 9.52% maximum relative deviation from the data.

An Outlook on the Draft-Tube-Surge Study

  • Nishi, Michihiro;Liu, Shuhong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.1
    • /
    • pp.33-48
    • /
    • 2013
  • If large pressure fluctuation is observed in the draft tube of a Francis turbine at part-load operation, we have generally called it draft-tube-surge. As occurrence of this phenomenon seriously affects the limit of turbine operating range, extensive studies on the surge have been made since proposal of surge-frequency criterion given by Rheingans. According to the literature survey of related topics in recent IAHR symposiums on hydraulic machinery and systems, in which state-of-the-art contributions were mainly presented, a certain review of them may be desirable for an outlook on the future studies in this research field. Thus, in this review paper, the authors' previous attempts for the last three decades to challenge the following topics: a rational method for component test of a draft tube, nature of spiral vortex rope and its behavior in a draft tube and cavitation characteristics of pressure fluctuations, are introduced together with other related contributions, expecting that more useful and significant studies will be accomplished in the future.

Uncertainty in Operational Modal Analysis of Hydraulic Turbine Components

  • Gagnon, Martin;Tahan, S.-Antoine;Coutu, Andre
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.278-285
    • /
    • 2009
  • Operational modal analysis (OMA) allows modal parameters, such as natural frequencies and damping, to be estimated solely from data collected during operation. However, a main shortcoming of these methods resides in the evaluation of the accuracy of the results. This paper will explore the uncertainty and possible variations in the estimates of modal parameters for different operating conditions. Two algorithms based on the Least Square Complex Exponential (LSCE) method will be used to estimate the modal parameters. The uncertainties will be calculated using a Monte-Carlo approach with the hypothesis of constant modal parameters at a given operating condition. In collaboration with Andritz-Hydro Ltd, data collected on two different stay vanes from an Andritz-Hydro Ltd Francis turbine will be used. This paper will present an overview of the procedure and the results obtained.

Improvement of Load Following Operation by Governor Control Logic Modification of the Thermal Power Plant (1) (기력발전소 조속기의 제어개선에 의한 발전기 부하추종성의 향상 (1))

  • Lee, Jong-Ha;Kim, Tae-Woong
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.501-503
    • /
    • 2005
  • The improvement of load following operation of the thermal power plant is influenced to the electrical quality. Analysis of boiler, turbine, and governor system, and the study of control algorithm are preceded. The thermal power plant is operated by various control systems. In the case of faulty governor system, it takes long days to solve the problem and impossible to repair the mechanism without outage. A non-planned out-age is taken into consideration because of economical power production. In this paper, to clear the continuous swings of an old turbine governor system(YEOSU #1), the trend, the control logic, and the hydraulic mechanism are analyzed, and then the control circuit with ADAPT function and the 1st order lag circuit are inserted and modified. After that, the power plant comes to automatic governor control operation.

  • PDF

Characteristics of Synchronous and Asynchronous modes of fluctuations in Francis turbine draft tube during load variation

  • Goyal, Rahul;Cervantes, Michel J.;Gandhi, Bhupendra K.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.2
    • /
    • pp.164-175
    • /
    • 2017
  • Francis turbines are often operated over a wide load range due to high flexibility in electricity demand and penetration of other renewable energies. This has raised significant concerns about the existing designing criteria. Hydraulic turbines are not designed to withstand large dynamic pressure loadings on the stationary and rotating parts during such conditions. Previous investigations on transient operating conditions of turbine were mainly focused on the pressure fluctuations due to the rotor-stator interaction. This study characterizes the synchronous and asynchronous pressure and velocity fluctuations due to rotor-stator interaction and rotating vortex rope during load variation, i.e. best efficiency point to part load and vice versa. The measurements were performed on the Francis-99 test case. The repeatability of the measurements was estimated by providing similar movement to guide vanes twenty times for both load rejection and load acceptance operations. Synchronized two dimensional particle image velocimetry and pressure measurements were performed to investigate the dominant frequencies of fluctuations, vortex rope formation, and modes (rotating and plunging) of the rotating vortex rope. The time of appearance and disappearance of rotating and plunging modes of vortex rope was investigated simultaneously in the pressure and velocity data. The asynchronous mode was observed to dominate over the synchronous mode in both velocity and pressure measurements.

Importance Of Tribology in Positive-Displacement Type of Fluid Machinery and Heat Engine

  • Nakahara, Tsunamitsu
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.3-8
    • /
    • 1998
  • The industrial revolution in England was based on the manufacturing systems by the power of water mill and rapidly progressed by the innovation of steam engine. It is no exaggeration to say that today's civilization is realized by the development of various types of power machinery, namely fluid machinery and heat engine. The electric energy is converted mainly from thermal energy (mainly steam) of mineral oil, coal and nuclear fuel through generator connected with steam turbine which is a kind of power machinery. There are various types of power machinery as shown in Tables 1a and 1b. They are classified into two types by use. One is absorption type of fluid and/or thermal energy, for examples, windmill and heat engine. The other is provision type of the energies for examples, pump, compressor and propulsion. By flow type, they are also classified by two types, turbo type and positive-displacement type. The turbo type began from water mill and windmill and evolve to steam turbine and finally to gas turbine. The positive-displacement type started from reciprocating water pump and developed into steam engine and changed to reciprocating combustion engine. The pumps and motors used in oil hydraulic system for power control are also positive-displacement type.

  • PDF

Hydrodynamic Calculation of Two-stage Weis-Fogh Type Water Turbine (2단 직렬 Weis-Fogh형 수차의 유체역학적 특성계산)

  • Ro, Ki Deok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.11
    • /
    • pp.709-717
    • /
    • 2017
  • In this study, a model of two-stage Weis-Fogh type water turbine model is proposed, the hydrodynamic characteristics of this water turbine model are calculated by the advanced vortex method. The basic conditions and the motion of each wing are the same as that of the single-stage model previously proposed by the same author. The two wings (NACA0010 airfoils) and both channel walls are approximated by source and vortex panels, and free vortices are introduced from the body surfaces. The distance between the front wing axis and the rear wing axis, and the phase difference between the motion of the two wings, which is in phase and out of phase are set as the calculation parameters. For each case, the unsteady flow fields, pressure fields, force coefficients, and efficiency of the two wings are calculated, and the hydrodynamic characteristics of the proposed water turbine model are discussed.