• Title/Summary/Keyword: Hydraulic Models

Search Result 565, Processing Time 0.028 seconds

Evaluation of Hydraulic Conductivity Function in Unsaturated Soils using an Inverse Analysis (역해석기법을 이용한 불포화토 투수계수함수 산정에 관한 연구)

  • Lee, Joonyong;Han, Jin-Tae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.4
    • /
    • pp.1-11
    • /
    • 2013
  • Unsaturated hydraulic conductivity function is one of key parameters to solve the flow phenomena in problems of landslide. Prediction models for hydraulic conductivity function related to soil-water retention curve equations in many geotechnical applications have been still used instead of direct measurement of the hydraulic conductivity function since prediction models from soil-water retention curve equations are attractive for their fast and easy use and low cost. However, many researchers found that prediction models for the hydraulic conductivity function can not predict the hydraulic conductivity exactly in comparison with experimental outputs. This research introduced an inverse analysis to evaluate the hydraulic conductivity function corresponding to experimental output from the flow pump system. Optimisation process was carried out to obtain the hydraulic conductivity function. This research showed that the inverse analysis with flow pump system was suitable to assess the hydraulic conductivity in unsaturated soil, and the prediction models for the hydraulic conductivity were led to the significant discrepancy from actual experimental outputs.

A Study of Computer Models Used in Environmental Impact Assessment II : Hydrologic and Hydraulic Models (환경영향평가에 사용되는 컴퓨터 모델에 관한 연구 II : 수리수문 모델)

  • Park, Seok-Soon;Na, Eun-Hye
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.1
    • /
    • pp.25-37
    • /
    • 2000
  • This paper presents a study of hydrological and hydraulic model applications in environmental impact statements which were submitted during recent years in Korea. In many cases (almost 70 %), the hydrological and hydraulic changes were neglected from the impact identification processes, even if the proposed actions would cause significant impacts on those environmental items. In most cases where the hydrological and hydraulic impacts were predicted, simple equations were used as an impact prediction tool. Computer models were used in very few cases(5%). Even in these few cases, models were improperly applied and thus the predicted impacts would not be reliable. The improper applications and the impact neglections are attributed to the fact that there are no available model application guidelines as well as no requirements by the review agency. The effects of mitigation measures were not analyzed in most cases. Again, these can be attributed to no formal guidelines available for impact predictions until now. A brief guideline is presented in this paper. This study suggested that the model application should be required and guided in detail by the review agency. It is also suggested that the hydrological and hydraulic items shoud be integrated with the water quality predictions in future, since the non-point source pollution runoff is based on the hydrologic phenomena and the water quality reactions on the hydraulic nature.

  • PDF

Design of Emergency Spillway Using Hydraulic and Numerical Model - ImHa Multipurpose Dam (수리모형실험과 수치모의를 이용한 비상여수로 설계-임하댐)

  • Jeon, Tae-Myoung;Kim, Hyung-Il;Park, Hyung-Seop;Baek, Un-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1726-1731
    • /
    • 2006
  • Hydraulic and numerical models were applied to design the emergency spillway of ImHa multipurpose Dam. For the numerical model, FLOW-3D was used to evaluate the three-dimensional flow in the spillway. The results of hydraulic model were compared with those of the numerical model which were separated into four zones such as approaching zone, weir zone, transition & tunnel chute zone, and dissipator zone. Moreover, for optimum design of the spillway, the hydraulic and numerical models were performed for the basic plan. Solving the problems of the basic plan, the optimized alternative design was proposed. The numerical models for various conditions of the spillway were performed, which is not always feasible in the hydraulic models. Verified by using the hydraulic models, the optimum alternative design was proposed.

  • PDF

Experimental Study on Wave-Induced Hydraulic Pressure subjected to Bottom of Floating Structures (부유구조체 하면에 작용하는 파압에 대한 실험적 연구)

  • Jeong, Youn-Ju;You, Young-Jun;Lee, Du-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6A
    • /
    • pp.425-433
    • /
    • 2011
  • In this study, in order to investigate the wave-induced buoyancy effects, experimental studies were conducted on pontoon-type floating structures. A series of small-scale tests with various wave cases were performed on the pontoon models. A total of four small-scale pontoon models with different lateral shapes and bottom details were fabricated and tested under the five different wave cases. Six hydraulic pressure gauges were attached to the bottom surfaces of the pontoon models and the wave-induced hydraulic pressure was measured during the tests. Finally, hydraulic pressures subjected to the bottoms of the pontoon models were compared with each other. As the results of this study, it was found that whereas the waffled bottom shape hardly influenced the wave-induced hydraulic pressure, the hybrid lateral shape significantly influenced the wave-induced hydraulic pressure subjected on the bottoms of floating structures. The air gap effects of the hybrid shape contribute to decreasing the wave-induced hydraulic pressure due to absorption of wave impact energy. Compared with box type, the hydraulic pressures of the hybrid type were about 83% at the bow, 74% at the middle, and 53% at the stern.

Hydraulic performance and flow resistance tests of various hydraulic parts for optimal design of a reactor coolant pump for a small modular reactor

  • Byeonggeon Bae;Jaeho Jung;Je Yong Yu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1181-1190
    • /
    • 2023
  • Hydraulic performance and flow resistance tests were performed to confirm the main parameters of the hydraulic instrumentation that can affect the pump performance of the reactor coolant pump. The flow resistance test offers important experimental data, which are necessary to predict the behavior of the primary coolant when the circulation of the reactor coolant pump is stopped. Moreover, the shape of the hydraulic section of the pump, which was considered in the test, was prepared to compare the mixed-flow- and axial-flow-type models, the difference in the number of blades of the impeller and diffuser, the difference in the shape of the impeller blade and its thickness, and the effect of coating at the suction bell. Additionally, five models of the hydraulic part were manufactured for the experiments. In this study, the differences in performance owing to the design factors were confirmed through the experimental results.

Electronic-Hydraulic Hitch Control System for Agricultural Tractors (III) -Computer Simulation- (트랙터의 전자 유압식 히치 제어 시스템에 관한 연구 (III) -컴퓨터 시뮬레이션-)

  • Kim, K.Y.;Ryu, K.H.;Yoo, S.N.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.4
    • /
    • pp.290-297
    • /
    • 1990
  • The purposes of this study were to perform theoretical analysis of an electronic-hydraulic hitch control system for position and draft control of tractor implements and to investigate the performance of the control system through computer simulation. Computer simulation models which could predict the responses of the system to the step and sinusoidal inputs in position and draft controls were developed using the simulation package "TUTSIM". The effects of control mode, hydraulic flow rate, deadband, and proportional constant on control performance of the system were investigated. The simulated results were compard with the experimental ones to verify the simulation models. The simulation models appeared to be a useful means for the analysis and the design of the electronic-hydraulic hitch control system.

  • PDF

Overview of Rosetta for Estimation of Soil Hydraulic Parameters using Support Vector Machines (보조벡터기로를 사용한 토양수리계수 추정을 위한 로제타 개관)

  • Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.spc
    • /
    • pp.8-13
    • /
    • 2009
  • Mathematical models have become increasingly popular in both research and management problems involving flow and transport processes in the subsurface. Rosetta is a program to estimate unsaturated hydraulic properties from surrogate soil data such as soil texture data and bulk density. Models of this type are called pedotransfer functions (PTFs) as an alternative measurements since they translate basic soil data into hydraulic properties. These functions may be either measured directly or estimated indirectly through prediction from more easily measured data based using quasi-empirical models.

Proposal for the Estimation of the Hydraulic Conductivity of Porous Asphalt Concrete Pavement using Regression Analysis (단순회귀분석에 의한 배수성 아스팔트의 투수계수 산정모델 제안)

  • Jang, Yeongsun;Kim, Dowan;Mun, Sungho;Jang, Byungkwan
    • International Journal of Highway Engineering
    • /
    • v.15 no.3
    • /
    • pp.45-52
    • /
    • 2013
  • PURPOSES : This study is to construct the regression models of drainage asphalt concrete specimens and to provide the appropriate coefficients of hydraulic conductivity prediction models. METHODS: In terms of easy calculation of the hydraulic conductivity from porosity of asphalt concrete pavement, the estimation model of hydraulic conductivity was proposed using regression analysis. 10 specimens of drainage asphalt concrete pavement were made for measurement of the hydraulic conductivity. Hydraulic conductivity model proposed in this study was calculated by empirical model based on porosity and the grain size. In this study, it shows the compared results from permeability measured test and empirical equation, and the suitability of proposed model, using regression analysis. RESULTS: As the result of the regression analysis, the hydraulic conductivity calculated from the proposal model was similar to that resulted from permeability measured test. Also result of RMSE (Root Mean Square Error) analysis, a proposed regression model is resulted in more accurate model. CONCLUSIONS: The proposed model can be used in case of estimating the hydraulic conductivity at drainage asphalt concrete pavements in fields.

Effects of Cylinder Shell Elasticity on Effective Bulk Modulus of Oil in Automotive Hydraulic Dampers (차량용 유압감쇠기 내 기름의 유효 체적탄성계수에 미치는 실린더 벽 탄성의 영향)

  • 이일영;손단단
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.187-197
    • /
    • 2004
  • This paper presents the effects of cylinder shell elasticity on effective bulk modulus of oil $K_e$ in automotive hydraulic dampers. A theoretical model of cylinder shell bulk modulus $K_c$ based on the elasticity theory of thick-walled cylinder incorporating not only radial but longitudinal deformation is proposed. In a cylinder, values of $K_c$ by the new model and traditional models are computed and the discrepancies among them are discussed. In a twin-tube type automotive damper, the variation of $K_e$ under different pressure values in chambers of the damper cylinder, based on different theoretical models for $K_c$ is computed. Through these computations, it is shown that remarkable discrepancies in computed values of $K_e$ might occur according to the $K_e$ models in connection with $K_c$ models.

A Study on Shortcomings of Mechanical Model with Lumped Mass for Dynamic Characterization of Hydraulic Mounts and Confirmation of Hydraulic Model by Improvement of Experimentations (유체 봉입 마운트의 동적 특성화를 위한 집중질량 요소를 갖는 기계적 모형의 문제점 파악과 실험 방법 개선을 통한 수력학적 모형의 타당성 확인)

  • 배만석;이준화;김광준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.5
    • /
    • pp.393-399
    • /
    • 2003
  • Hydraulic mounts show strong1y frequency-dependent stiffness and damping characteristics in low frequency range, which result from so called inertia track dynamics. A lumped mass has been incorporated in several mechanical models of the literature to take the inertia effect of the fluid in the track into consideration. Although complex s%illness by the mechanical model showed good agreements with the measured values, there exists a critical pitfall. In this paper, the shortcomings of mechanical models with lumped mass for hydraulic founts are clearly identified by illustrating actual measurements of the stiffness parameters for a hydraulic mount. It is conclusively discussed that the inertia effect of the fluid flow through the circular track is significant but latent. As an alternative to the mechanical model, a hydraulic model is claimed to be used for further dynamic analysis of engine/mount system or whole car system.