• Title/Summary/Keyword: Hybridization mechanisms

Search Result 58, Processing Time 0.023 seconds

Local Expression of $Mel_{la}$ and Effect of Melatonin on Expression of PLP-A Gene in the Rat Placenta (흰쥐 태반에서의 $Mel_{la}$ 유전자 발현과 멜라토닌이 PLP-A 유전자 발현에 미치는 영향)

  • Shin, Chang-Sook;Lee, Chae-Kwan;Kang, Han-Seung;Kim, Haekwon;Yoon, Yong-Dal;Moon, Deog-Hwan;Kang, Sung-Goo
    • Development and Reproduction
    • /
    • v.5 no.2
    • /
    • pp.181-187
    • /
    • 2001
  • Seasonal changes and circadian rhythm of plasma prolactin(PRL) concentration in mammals are mediated by melatonin. Pinealectomy or denervation of the pineal gland produces an increase in plasma PRL level. In the rat placenta several members of the PRL family gene are expressed during the late pregnancy. However, the full spectrum of their expression mechanisms and regulatory factors are not elucidated yet. Present study aimed to investigate the local expression of the melatonin receptor la(Me $l_{la}$ ) gene and the effect of melatonin on expression of prolactin-like protein A(PLP-A), a member of the PRL-family gene in the rat placenta. According to the RT-PCR, northern blot and in situ hybridization experiments, Me $l_{la}$ gene was locally expressed in the rat placenta, Me $l_{la}$ mRNA was localized mainly in the placental junctional and labyrinth zones. Interestingly, junctional zone of the placenta showed strong expression of Me $l_{la}$ at daytime(16:00) than at nighttime(22:00). Melatonin agonist, chlorornelatonin decreased the PLP-A mRNA levels in the rat placenta. These results suggest that melatonin coupled with Me $l_{la}$ , may act as a regulation factor that mediates the expression of the PLP-A gene in the rat placenta.

  • PDF

Expression of mRNAs characteristic of cartilage and bone in the developing mandibular condyle of mice (발육중인 생쥐 하악 과두에서 연골 및 골의 특이 유전자 발현)

  • Ji, Kuk-Soep;Yoon, Young-Jooh;Park, Joo-Cheol;Kim, Kwang-Won
    • The korean journal of orthodontics
    • /
    • v.34 no.2 s.103
    • /
    • pp.143-152
    • /
    • 2004
  • It has not been elucidated whether the initiation of condylar development of the mandible is related with the periosteum of the mandible, or if it derives from a separate programmed blastema not related with the mandible. Also, although the mandibular condylar cartilage is known to promote growth, few studies have dealt with molecular-biologic mechanisms such as the expression of specific genes according to the differentiation of the mandibular condyle. To elucidate the unique cellular characteristics, development, and differentiation process of the mandibular condyle, an examination of expressions of genes characteristic of cartilage and bone were carried out using RT-PCR and mRNA in situ hybridization. 1. Type? collagen mRNA was detected with type II collagen mRNA in the differentiation and growth process of the cartilage of the mandibular condyle. TypeII collagen mRNA was demonstrated in the whole resting md upper part of the poliferative zone, whereas type II collagen mRNA was observed in the resting, proliferative and upper hypertrophic cartilage zone of the mandibular condyle. 2. The condylar cartilage rapidly increased in size due to the accumulation of hypertrophic chondrocytes as characterized by the expression of type II collagen mRNA during postnatal development. 3. BMP-4 mRNA was present in the anlage of the future condylar process and also in the ossifying mandibular body. 4. IHH mRNA was limited exclusively to the lower part of the proliferative zone and the upper part of the hypertrophic cartilage zone during condylar development. These findings were different from those in the growth-plate cartilage of the long bone, indicating a characteristic feature of the differentiation of the chondrocytes in the condylar cartilage present in prenatal and postnatal development. Furthermore, it was also suggested that chondroblasts of condylar cartilage rapidly differentiate into hypertrophic chondrocytes with increased functional Load force such as muscle activity and mastication.

Identification of Sex-Specific DNA Sequences in the Chicken (닭의 성특이적 DNA 분리)

  • Song, K.D.;Shin, Y.S.;Han, Jae Y.
    • Korean Journal of Poultry Science
    • /
    • v.20 no.4
    • /
    • pp.177-188
    • /
    • 1993
  • This study was performed to find out the reasonable sexing methods In the chicken, obtain the basic information for the mechanisms related to chicken sexual differentiation and identify the genes which known to involved in chicken sex differentiation. The chromosome analysis of chicken embryonic fibroblast was a simple method to determine sex of chicken by means of Z and W chromosome identification. The bands of female chicken genomic DNA digested with Xho Ⅰ and Eco RI restriction endonuclease showed to be useful in direct sex determination and these repetitive sequences of Xho Ⅰ and Eco RI families were proposed to be very homologous in their sequences by colony hybridization analysis. Seven of 150 random primers were selected to amplify the W chromosome-specific band by using arbitrary primed PCR and three of them were useful to identify the sex of chicken. To identify the sex differentiation genes in the chicken, PCR for the amplification of ZFY and SRY sequences was performed. ZFY and SRY sequences were amplified successfully in the chicken genome, implying that chicken genome might have the sex-related conserved sequences similar to mammalian ones. The PCR products of ZFY amplification were the same in both sexes, suggesting that these sequences may be located on autosome or Z chromosome. The profile of PCR amplification for SRY sequences showed variation between sexes, but this result was not enough to specify whether the SRY gene in chicken is on the autosome or sex chromosome.

  • PDF

Expression of Hr-Erf Gene during Ascidian Embryogenesis

  • Kim, Jung Eun;Lee, Won Young;Kim, Gil Jung
    • Development and Reproduction
    • /
    • v.17 no.4
    • /
    • pp.389-397
    • /
    • 2013
  • FGF9/16/20 signaling pathway specify the developmental fates of notochord, mesenchyme, and neural cells in ascidian embryos. Although a conserved Ras/MEK/Erk/Ets pathway is known to be involved in this signaling, the detailed mechanisms of regulation of FGF signaling pathway have remained largely elusive. In this study, we have isolated Hr-Erf, an ascidian orthologue of vertebrate Erf, to elucidate interactions of transcription factors involved in FGF signaling of the ascidian embryo. The Hr-Erf cDNA encompassed 3110 nucleotides including sequence encoded a predicted polypeptide of 760 amino acids. The polypeptide had the Ets DNA-binding domain in its N-terminal region. In adult animals, Hr-Erf mRNA was predominantly detected in muscle, and at lower levels in ganglion, gills, gonad, hepatopancreas, and stomach by quantitative real-time PCR (QPCR) method. During embryogenesis, Hr-Erf mRNA was detected from eggs to early developmental stage embryos, whereas the transcript levels were decreased after neurula stage. Similar to the QPCR results, maternal transcripts of Hr-Erf was detected in the fertilized eggs by whole-mount in situ hybridization. Maternal mRNA of Hr-Erf was gradually lost from the neurula stage. Zygotic expression of Hr-Erf started in most blastomeres at the 8-cell stage. At gastrula stage, Hr-Erf was specifically expressed in the precursor cells of brain and mesenchyme. When MEK inhibitor was treated, embryos resulted in loss of Hr-Erf expression in mesenchyme cells, and in excess of Hr-Erf in a-line neural cells. These results suggest that zygotic Hr-Erf products are involved in specification of mesenchyme and neural cells.

Gene Expression Analysis of Rat Liver Epithelial Cells in Response to Thioacetamide

  • Park, Joon-Suk;Yeom, Hye-Jung;Jung, Jin-Wook;Hwang, Seung-Yong;Lee, Yong-Soon;Kang, Kyung-Sun
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.3
    • /
    • pp.203-208
    • /
    • 2005
  • Thioacetamide (TA) is potent haptotoxincant that requires metabolic activation by mixed-function oxidases. Micrcarray technology, which is massive parallel gene expression profiling in a single hybridization experiment, has provided as a powerful molecular genetic tool for biological system related toxicant. In this study we focus on the use of toxicogenomics for the determination of gene expression analysis associated with hepatotoxicity in rat liver epithelial cell line WB-F344 (WB). The WB cells was used to assess the toxic effects of TA. WB cells were exposed to two concentrations of TA-doses which caused 20% and 50% cell death were chosen and the cells exposed for periods of 2 and 24 h. Our data revealed that following the 2-h exposure at the both of doses and 24-h exposure at the low doses, few changes in gene expression were detected. However, after 24-h exposure of the cells to the high concentration, multiple changes in gene expression were observed. TA treatment gave rise predominantly to up-regulation of genes involved in cell cycle and cell death, but down-regulation of genes involves in cell adhesion and calcium ion binding. Exposure of WB cells to higher doses of the TA gave rise to more changes in gene expression at lower exposure times. These results show that TA regulates expression of numerous genes via direct molecular signaling mechanisms in liver cells.

Prediction and Annotation of ABC Transporter Genes from Magnaporthe oryzae Genome Sequence (벼도열병균 게놈서열로부터 ABC transporter 유전자군의 예측 및 특성 분석)

  • Kim, Yong-Nam;Kim, Jin-Soo;Kim, Su-Young;Kim, Jeong-Hwan;Lee, Jong-Hwan;Choi, Woo-Bong
    • Journal of Life Science
    • /
    • v.20 no.2
    • /
    • pp.176-182
    • /
    • 2010
  • Magnaporthe oryzae is destructive plant-pathogenic fungus and causes rice blast. The pathogen uses several mechanisms to circumvent the inhibitory actions of fungicides. ATP-binding cassette (ABC) transporters are known to provide protection against toxic compounds in the environment. PC facilitated bioinformatic analysis, particularly with respect to accessing and extracting database information and domain identification. We predicted ABC transporter genes from the M. oryzae genome sequence with computation and bioinformatics tools. A total of thirty three genes were predicted to encode ABC transporters. Three of thirty three putative genes corresponded to three known ABC transporter genes (ABC1, ABC2 and ABC3). Copy numbers of the ABC transporter genes were proven by Southern blot analysis, which revealed that twenty genes tested exist as a single copy. We amplified the DNA complementary to RNA corresponding to eleven of these by reverse transcriptase polymerase chain reaction.

Construction and analysis of painting probe for homogeneously staining regions in human neuroblastoma cell line IMR-32

  • Park, Sun-Hwa;Kim, Ho-Chung;Chun, Yong-Hyuck
    • Journal of Genetic Medicine
    • /
    • v.1 no.1
    • /
    • pp.45-50
    • /
    • 1997
  • Neuroblastoma, a pediatric malignant neoplasm of neural crest origin, has a wide range of clinical virulence. The mechanisms contributing to the development of neuroblastomas are largely unclear, but non-random chromosomal changes identified over the past years suggest the involvement of genetic alterations. Amplification of the human N-myc proto-oncogene is frequently seen either in extrachromosomal double minutes or in homogeneously staining regions (HSRs) of aggressively growing neuroblastomas. N-myc maps to chromosome 2 band 24, but HSR have never been observed at this band, suggesting transposition of N-myc during amplification. We have constructed and analyzed the region-specific painting probe for HSR in neuroblastoma IMR-32 to determine the derivative chromosomes. Microdissection was performed on HSR using an inverted microscope with the help of microglass needles and an micromanipulator. We pretreated the microdissected fragments with Topoisomerase I which catalyzes the relaxation of supercolled DNA, and performed two initial rounds of DNA synthesis with T7 DNA polymerase followed by conventional PCR to enable the reliable preparation of Fluorescent in situ hybridization probe from a single microdissected chromosome. With this method, it was possible to construct the region-specific painting probe for HSR. The probe hybridized specifically to the HSRs of IMR-32, and to 2p24, 2p13 of normal chromosome. Our results suggest there was coamplification of N-myc together with DNA of the chromosome 2p24 and 2p13. Moreover, the fluorescent signals for the amplified chromosomal regions in IMR-32 cells were also easily recognized at a Thus this painting probe can be applied to detect the similar amplification of N-myc in neuroblastoma tissue, and the probe pool for HSR may be used to identify the cancer-relevant genes.

  • PDF

Identification of Glycine max Genes Expressed in Response to Soybean mosaic virus Infection

  • Jeong, Rae-Dong;Lim, Won-Seok;Kwon, Sang-Wook;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.21 no.1
    • /
    • pp.47-54
    • /
    • 2005
  • Identification of host genes involved in disease progresses and/or defense responses is one of the most critical steps leading to the elucidation of disease resistance mechanisms in plants. Soybean mosaic virus (SMV) is one of the most prevalent pathogen of soybean (Glycine max). Although the soybeans are placed one of many important crops, relatively little is known about defense mechanism. In order to obtain host genes involved in SMV disease progress and host defense especially for virus resistance, two different cloning strategies (DD RT-PCR and Subtractive hybridization) were employed to identify pathogenesis- and defenserelated genes (PRs and DRs) from susceptible (Geumjeong 1) and resistant (Geumjeong 2) cultivars against SMV strain G7H. Using these approaches, we obtained 570 genes that expressed differentially during SMV infection processes. Based upon sequence analyses, differentially expressed host genes were classified into five groups, i.e. metabolism, genetic information processing, environmental information processing, cellular processes and unclassified group. A total of 11 differentially expressed genes including protein kinase, transcription factor, other potential signaling components and resistant-like gene involved in host defense response were selected to further characterize and determine expression profiles of each selected gene. Functional characterization of these genes will likely facilitate the elucidation of defense signal transduction and biological function in SMV-infected soybean plants.

Genomic Alteration of Bisphenol A Treatment in the Testis of Mice

  • Kim, Seung-Jun;Park, Hye-Won;Youn, Jong-Pil;Ha, Jung-Mi;An, Yu-Ri;Lee, Chang-Hyeon;Oh, Moon-Ju;Oh, Jung-Hwa;Yoon, Seok-Joo;Hwang, Seung-Yong
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.3
    • /
    • pp.216-221
    • /
    • 2009
  • Bisphenol A (BPA) is commonly used in the production of pharmaceutical, industrial, and housing epoxy, as well as polycarbonate plastics. Owing to its extensive use, BPA can contaminate the environment either directly or through derivatives of these products. BPA has been classified as an endocrine disruptor chemicals (EDCs), and the primary toxicity of these EDCs in males involves the induction of reproductive system abnormality. First, in order to evaluate the direct effects on the Y chromosome associated with reproduction, we evaluated Y chromosome abnormalities using a Y chromosome microdeletion detection kit. However, we detected no Yq abnormality as the result of BPA exposure. Secondly, we performed high-density oligonucleotide array-based comparative genome hybridization (CGH) to assess genomic alteration as a component of our toxicity assessment. The results of our data analysis revealed some changes in copy number. Seven observed features were gains or losses in chromosomal DNA (P-value<1.0e-5, average log2 ratio>0.2). Interestingly, 21 probes of chr7:7312289-10272836 (qA1-qA2 in cytoband) were a commonly observed amplification (P-value 3.69e-10). Another region, chr14:4551029-10397399, was also commonly amplified (P-value 2.93e-12, average of log2 ratios in segment>0.3786). These regions include many genes associated with pheromone response, transcription, and signal transduction using ArrayToKegg software. These results help us to understand the molecular mechanisms underlying the reproductive effects induced by BPA.

Expression of Survivin and Caspase 3 in Oral Squamous Cell Carcinoma and Peritumoral Tissue

  • Li, S.X.;Chai, L.;Cai, Z.G.;Jin, L.J.;Chen, Y.;Wu, H.R.;Sun, Z.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.10
    • /
    • pp.5027-5031
    • /
    • 2012
  • This study was conducted to investigate the expression of survivin and caspase 3 in oral squamous cell carcinoma and peritumoral tissue, and possible pathogenesis mechanisms. We used ELISA and western blotting to detect the protein expression levels of survivin and caspase 3 in tissue. In situ hybridization and real-time PCR were applied to assess mRNA expression levels. In this study, 13 tumor samples and 13 peritumoral tissue samples were collected from oral squamous cell carcinoma patients and 10 normal tissue samples obtained from patients without tumor. The result showed that the protein and mRNA expression of survivin in carcinoma was the highest among three types of tissue; following was that in peritumoral tissue. No difference in caspase 3 zymogen between peritumoral tissue and normal tissue could be found, while it was evidently decreased in carcinoma tissue. Activated caspase 3 was detected in normal tissue but could not be identified in peritumoral or carcinoma tissue. Our results indicate that the expression of survivin is apparently elevated in tumoral and peritumoral tissue. Expression of activated caspase 3 was not detected in tumoral tissue and the expression of caspase 3 zymogen was decreased in tumoral tissue. Our findings suggest that survivin may inhibit both synthesis and activation of caspase 3, hence inhibiting cell apoptosis and facililitating eventual development of oral squamous cell carcinoma.