DOI QR코드

DOI QR Code

Prediction and Annotation of ABC Transporter Genes from Magnaporthe oryzae Genome Sequence

벼도열병균 게놈서열로부터 ABC transporter 유전자군의 예측 및 특성 분석

  • Kim, Yong-Nam (Department of Biomaterial Control, Dong-Eui University) ;
  • Kim, Jin-Soo (Department of Biomaterial Control, Dong-Eui University) ;
  • Kim, Su-Young (Department of Biomaterial Control, Dong-Eui University) ;
  • Kim, Jeong-Hwan (Department of Biomaterial Control, Dong-Eui University) ;
  • Lee, Jong-Hwan (Department of Biomaterial Control, Dong-Eui University) ;
  • Choi, Woo-Bong (Department of Biomaterial Control, Dong-Eui University)
  • 김용남 (동의대학교 바이오물질제어학과) ;
  • 김진수 (동의대학교 바이오물질제어학과) ;
  • 김수영 (동의대학교 바이오물질제어학과) ;
  • 김정환 (동의대학교 바이오물질제어학과) ;
  • 이종환 (동의대학교 바이오물질제어학과) ;
  • 최우봉 (동의대학교 바이오물질제어학과)
  • Received : 2009.12.02
  • Accepted : 2009.12.10
  • Published : 2010.02.28

Abstract

Magnaporthe oryzae is destructive plant-pathogenic fungus and causes rice blast. The pathogen uses several mechanisms to circumvent the inhibitory actions of fungicides. ATP-binding cassette (ABC) transporters are known to provide protection against toxic compounds in the environment. PC facilitated bioinformatic analysis, particularly with respect to accessing and extracting database information and domain identification. We predicted ABC transporter genes from the M. oryzae genome sequence with computation and bioinformatics tools. A total of thirty three genes were predicted to encode ABC transporters. Three of thirty three putative genes corresponded to three known ABC transporter genes (ABC1, ABC2 and ABC3). Copy numbers of the ABC transporter genes were proven by Southern blot analysis, which revealed that twenty genes tested exist as a single copy. We amplified the DNA complementary to RNA corresponding to eleven of these by reverse transcriptase polymerase chain reaction.

벼의 생산에 있어 가장 큰 문제 요인 중 하나인 벼도열병의 발생 원인균인 벼도열병균은 다양한 기작에 의해 방제 약제에 대한 내성을 가지는 것으로 알려져 있다. 막 운반단백질인 ABC transporter의 경우 환경으로부터의 다양한 독성 물질들을 배출하는 것으로 알려져 있다. 이미 알려진 벼도열병균의 게놈 서열로부터 생물정보학적 분석을 통하여 ABC transporter 단백질의 도메인 특성을 보이는 33개의 유전자군 서열을 예측하였다. 이중 3개의 경우는 이미 알려진 유전자로 판명되었다. Southern Hybridization 분석에 적용한 20개의 유전자들이 모두 게놈상에 단일 copy로 존재함을 확인하였다. 새로 예측된 30개의 유전자중 11개는 RT-PCR을 통하여 전사단계에서의 유전자 발현이 확인되었다.

Keywords

References

  1. Adams, M. D., J. M. Kelley, and J. D. Gocayne. 1991. Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252, 1651-1656. https://doi.org/10.1126/science.2047873
  2. Clarke, J. D., S. M. Volko, H. Ledford, F. M. Ausubel, and X. Dong. 2000. Roles of salicylic acid, jamonic acid and ethylene in cpr-induced resistance in Arabidopsis. Plant Cell 12, 2175-2190. https://doi.org/10.1105/tpc.12.11.2175
  3. Dean, R. A., N. J. Talbot, and D. J. Ebbole. 2005. The genome sequnece of the rice blast fungus Magnaporthe grisea. Nature 434, 980-986. https://doi.org/10.1038/nature03449
  4. Dixon, R. A., M. J. Harrison, and C. J. Lamb. 1994. Early events in the activation of plant defense responses. Annual Review of Plant Biolog. 32, 479-501.
  5. Fleibner, A., C. Sopalla, and K. M. Weltring. 2000. An ATP-binding cassette multidrug-resistance transporter is necessary for tolerance of Gibberella pulicaris to phytoalexins and virulence on potato tubers. Molecular Plant-Microbe Interactions 15, 102-108. https://doi.org/10.1094/MPMI.2002.15.2.102
  6. Frelet, A. and M. Klein. 2006. Insight in eukaryotic ABC transporter function by mutation analysis. FEBS Letters 580, 1064-1084. https://doi.org/10.1016/j.febslet.2006.01.024
  7. Glazerbrook, J. 2001. Genes controlling expression of defense responses in Arabidopsis-2001 status. Current Opinion in Plant Biology 4, 301-308. https://doi.org/10.1016/S1369-5266(00)00177-1
  8. Gupta, A. and B. B. Chattoo. 2000. Functional analysis of a novel ABC transporter ABC4 from Magnaporthe grisea. FEMS Microbiology Letters 278, 22-28. https://doi.org/10.1111/j.1574-6968.2007.00937.x
  9. Ioannis Stergiopoulos, Lute-Harm Zwiers, and Maarten A. De Waard. 2003. The ABC transporter MgAtr4 is a virulence factor of Mycosparerlla graminicola that affects colonization of substomatal cavities in wheat leaves. Molecular plant-Microbe Interactions 16, 689-698. https://doi.org/10.1094/MPMI.2003.16.8.689
  10. Park, J. Y., J. M. Jin, Y. W. Lee, S. C. Kang, and Y. H. Lee. 2009. Rice blast fungus (M. oryzae) inects Arabidopsis Thaliana via a mechanism distinct from that required for the infection of rice. Plant Physiology 149, 474-486 https://doi.org/10.1104/pp.108.129536
  11. Kolaczkowski, M., M. van der Rest, A. Cybularz-Kolaczkowska, J. P. Soumillion, W. N. Konings, and A. Goffeau. 1996. Anticancer drugs, ionophoric peptides, and steroids as substrates of the yeast multidrug transporter Pdr5. Biological Chemistry 271, 31543-31548. https://doi.org/10.1074/jbc.271.49.31543
  12. Lee, Y. J., K. Yamamoto, H. Hiroshi, N. Ryoji, and H. Tadaaki. 2005. A novel ABC tansporter gene ABC2 involved in multidrug susceptibility but not pathogenicity in rice blast fungus, Magnaporthe grisea. Pesticide Biochemistry and Physiology 81, 13-23. https://doi.org/10.1016/j.pestbp.2004.07.007
  13. Nagaraj, S. H., R. B. Gasser, and S. Ranganathan. 2007. A hitchhiker's guide to expressed sequence tag (EST) analysis. Briefings in Bioinformatics 8, 6-21. https://doi.org/10.1093/bib/bbl015
  14. Osbourn, A. E. 1996. Performed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8, 1821-1831. https://doi.org/10.1105/tpc.8.10.1821
  15. Paumi, C. M., J. Menendez, A. Arnoldo, K. Engels, K. Iyer, S. Thaminy, O. Georgiev, Y. Barral, S. Michaelis, and I. Stagljar. 2007. Mapping protein-protein interactions for the yeast ABC transporter Ycf1p by integrated split-ubiquitin membrane yeast two-hybrid. Molecular Cell 26, 15-25. https://doi.org/10.1016/j.molcel.2007.03.011
  16. Rees, D. C., E. Johnson, and O. Lewinson. 2009. ABC transporters: the power to change. Nature 10, 218-227.
  17. Sheps, J. A., S. Ralph, Z. Zhao, D. L. Baillie, and V. Ling. 2004. The ABC transporter gene family of Caenorhabditis elegans has implications for the evolutionary dynamics of multidrug resistance in eukaryotes. Genome Biology 5, R15. https://doi.org/10.1186/gb-2004-5-3-r15
  18. Sturm, A., P. Cunningham, and M. Dean. 2009. The ABC transporter gene family of Daphnia pulex. BMC Genomics 10, 170. https://doi.org/10.1186/1471-2164-10-170
  19. Sun, C. B., A. Suresh, Y. Z. Deng, and N. I. Naqvi. 2006. A Multidrug Resistance Transporter in Magnaporthe is required for host penetration and for survival during oxidative stress. Plant Cell 18, 3686-3705. https://doi.org/10.1105/tpc.105.037861
  20. Urban, M., T. Bhargava, and J. E. Hamer. 1999. An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease. EMBO 18, 512-521. https://doi.org/10.1093/emboj/18.3.512
  21. Wolfger, H., Y. M. Mamnun, and K. Kuchler. 2001. Fungal ABC proteins: pleiotropic drug resistance, stress response and cellular detoxification. Microbiology 152, 375-389.

Cited by

  1. Lysimachia foenum-graecum Herba Extract, a Novel Biopesticide, Inhibits ABC Transporter Genes and Mycelial Growth of Magnaporthe oryzae vol.32, pp.1, 2016, https://doi.org/10.5423/PPJ.OA.08.2015.0157