• 제목/요약/키워드: Hybrid forecasting model

검색결과 77건 처리시간 0.026초

Knowledge-Based Model for Forecasting Percentage Progress Costs

  • Kim, Sang-Yong
    • 한국건축시공학회지
    • /
    • 제12권5호
    • /
    • pp.518-527
    • /
    • 2012
  • This study uses a hybrid estimation tool for effective cost data management of building projects, and develops a realistic cost estimation model. The method makes use of newly available information as the project progresses, and project cost and percentage progress are analyzed and used as inputs for the developed system. For model development, case-based reasoning (CBR) is proposed, as it enables complex nonlinear mapping. This study also investigates analytic hierarchy process (AHP) for weight generation and applies them to a real project case. Real case studies are used to demonstrate and validate the benefits of the proposed approach. By using this method, an evaluation of actual project performance can be developed that appropriately considers the natural variability of construction costs.

웹서비스와 스마트폰앱을 이용한 연안해양모델 예측자료의 시각화시스템 구현 (Geovisualization of Coastal Ocean Model Data Using Web Services and Smartphone Apps)

  • 김형우;구본호;우승범;이호상;이양원
    • Spatial Information Research
    • /
    • 제22권2호
    • /
    • pp.63-71
    • /
    • 2014
  • 최근 해양레포츠 산업이 블루오션으로 떠오르고 있는데, 해양레포츠는 조류, 수온, 염도 등과 같은 다양한 환경조건에 영향을 받기 때문에 관측자료 뿐만 아니라 모델 예측자료도 매우 필요한 정보이다. 본 연구에서는 연안해양모델인 FVCOM(Finite Volume Coastal Ocean Model)에서 산출된 예측자료를 웹 및 스마트폰을 통해 제공하는 시각화시스템을 구현하였다. 이를 위하여 FVCOM 자료에 내삽과 샘플링 등의 전처리를 하여, 조위, 수온, 염도의 래스터 이미지와 조류(유속, 유향)의 벡터 데이터베이스를 구축하였고, 스프링 프레임워크(Spring Framework)를 활용하여 REST(Representational State Transfer) 기반의 API(Application Programming Interface)를 제공하는 웹서비스를 구축하였다. 또한 데이터베이스 자료를 데스크톱 및 이기종의 스마트폰에 탑재시킴으로써 크로스플랫폼(cross-platform) 시각화 환경을 실현하였다.

원격상관을 이용한 북동아시아 여름철 강수량 예측 (A Prediction of Northeast Asian Summer Precipitation Using Teleconnection)

  • 이강진;권민호
    • 대기
    • /
    • 제25권1호
    • /
    • pp.179-183
    • /
    • 2015
  • Even though state-of-the-art general circulation models is improved step by step, the seasonal predictability of the East Asian summer monsoon still remains poor. In contrast, the seasonal predictability of western North Pacific and Indian monsoon region using dynamic models is relatively high. This study builds canonical correlation analysis model for seasonal prediction using wind fields over western North Pacific and Indian Ocean from the Global Seasonal Forecasting System version 5 (GloSea5), and then assesses the predictability of so-called hybrid model. In addition, we suggest improvement method for forecast skill by introducing the lagged ensemble technique.

적응형 부스팅을 이용한 파산 예측 모형: 건설업을 중심으로 (Bankruptcy Forecasting Model using AdaBoost: A Focus on Construction Companies)

  • 허준영;양진용
    • 지능정보연구
    • /
    • 제20권1호
    • /
    • pp.35-48
    • /
    • 2014
  • 2013년 건설 경기 전망 보고서에 따르면 주택건설경기 침체 상황의 지속으로 건설 기업의 유동성 위기가 지속될 것으로 전망된다. 건설업은 파산으로 인한 사회적 파급효과가 다른 산업에 비해 큰 편이지만, 업종의 특성상 다른 산업과는 상이한 자본구조와 부채비율, 현금흐름을 가지고 있어서 기업의 파산 예측이 더 어려운 측면이 있다. 건설업은 레버리지가 큰 산업으로 부채비율이 매우 높은 업종이며 현금흐름이 프로젝트 후반부에 집중되는 특성이 있다. 그리고 경기사이클에 따른 부침이 매우 심하여 경기하강국면에선 파산이 급증하는 양상을 보인다. 건설업이 레버리지 산업인 이상 건설업체의 파산율 증가는 여신을 공여한 은행에 큰 부담으로 작용한다. 그럼에도 그간의 파산예측모델이 주로 금융기관에 집중되어 왔고 건설업종에 특화된 연구는 드물었다. 기업의 재무 자료를 바탕으로 한 파산 예측 모델에 대한 연구는 오래 전부터 다양하게 진행되었다. 하지만, 일반적인 기업 전체를 대상으로 하는 모델이기 때문에, 건설 기업과 같이 유동성이 큰 기업의 예측에는 적절하지 못할 수 있다. 건설 산업은 오랜 사업 기간과 대규모 투자, 그리고 투자금 회수가 오래 걸리는 특징을 갖는 자본 집약 산업이다. 이로 인해 다른 산업과는 상이한 자본 구조를 갖기 마련이고, 다른 산업의 기업 재무 위험도를 판단하는 기준과 동일한 적용이 곤란할 수 있다. 최근에는 기계 학습을 바탕으로 한 기업 파산 예측 연구가 활발하다. 기계 학습의 대표적 응용 분야인 패턴 인식을 기업의 파산 예측에 응용한 것이다. 기업의 재무 정보를 바탕으로 패턴을 작성하고 이 패턴이 파산 위험 군에 속하는지 안전한 군에 속하는지 판단하는 것이다. 전통적인 Z-Score와 기계 학습을 이용한 파산 예측과 같은 기존 연구들은 특정 산업 분야가 아닌 일반적인 기업을 대상으로 하기 때문에 기업들의 특성을 전혀 고려하고 있지 못하다. 본 논문에서는 건설 기업을 규모에 따라 각 기법들의 예측 능력을 비교하여 적응형 부스팅이 가장 우수함을 확인하였다. 본 논문은 건설 기업을 자본금 규모에 따라 세 등급으로 분류하고 각각에 대해 적응형 부스팅의 예측력을 분석하였다. 실험 결과 적응형 부스팅이 다른 기법에 비해 예측 결과가 좋았고, 특히 자본금 규모가 500억 이상인 기업의 경우 아주 우수한 결과를 보였다.

준지도 학습 및 신경망 알고리즘을 이용한 전기가격 예측 (Electricity Price Prediction Based on Semi-Supervised Learning and Neural Network Algorithms)

  • 김항석;신현정
    • 대한산업공학회지
    • /
    • 제39권1호
    • /
    • pp.30-45
    • /
    • 2013
  • Predicting monthly electricity price has been a significant factor of decision-making for plant resource management, fuel purchase plan, plans to plant, operating plan budget, and so on. In this paper, we propose a sophisticated prediction model in terms of the technique of modeling and the variety of the collected variables. The proposed model hybridizes the semi-supervised learning and the artificial neural network algorithms. The former is the most recent and a spotlighted algorithm in data mining and machine learning fields, and the latter is known as one of the well-established algorithms in the fields. Diverse economic/financial indexes such as the crude oil prices, LNG prices, exchange rates, composite indexes of representative global stock markets, etc. are collected and used for the semi-supervised learning which predicts the up-down movement of the price. Whereas various climatic indexes such as temperature, rainfall, sunlight, air pressure, etc, are used for the artificial neural network which predicts the real-values of the price. The resulting values are hybridized in the proposed model. The excellency of the model was empirically verified with the monthly data of electricity price provided by the Korea Energy Economics Institute.

Prediction of carbon dioxide emissions based on principal component analysis with regularized extreme learning machine: The case of China

  • Sun, Wei;Sun, Jingyi
    • Environmental Engineering Research
    • /
    • 제22권3호
    • /
    • pp.302-311
    • /
    • 2017
  • Nowadays, with the burgeoning development of economy, $CO_2$ emissions increase rapidly in China. It has become a common concern to seek effective methods to forecast $CO_2$ emissions and put forward the targeted reduction measures. This paper proposes a novel hybrid model combined principal component analysis (PCA) with regularized extreme learning machine (RELM) to make $CO_2$ emissions prediction based on the data from 1978 to 2014 in China. First eleven variables are selected on the basis of Pearson coefficient test. Partial autocorrelation function (PACF) is utilized to determine the lag phases of historical $CO_2$ emissions so as to improve the rationality of input selection. Then PCA is employed to reduce the dimensionality of the influential factors. Finally RELM is applied to forecast $CO_2$ emissions. According to the modeling results, the proposed model outperforms a single RELM model, extreme learning machine (ELM), back propagation neural network (BPNN), GM(1,1) and Logistic model in terms of errors. Moreover, it can be clearly seen that ELM-based approaches save more computing time than BPNN. Therefore the developed model is a promising technique in terms of forecasting accuracy and computing efficiency for $CO_2$ emission prediction.

Development of a Model to Predict the Volatility of Housing Prices Using Artificial Intelligence

  • Jeonghyun LEE;Sangwon LEE
    • International journal of advanced smart convergence
    • /
    • 제12권4호
    • /
    • pp.75-87
    • /
    • 2023
  • We designed to employ an Artificial Intelligence learning model to predict real estate prices and determine the reasons behind their changes, with the goal of using the results as a guide for policy. Numerous studies have already been conducted in an effort to develop a real estate price prediction model. The price prediction power of conventional time series analysis techniques (such as the widely-used ARIMA and VAR models for univariate time series analysis) and the more recently-discussed LSTM techniques is compared and analyzed in this study in order to forecast real estate prices. There is currently a period of rising volatility in the real estate market as a result of both internal and external factors. Predicting the movement of real estate values during times of heightened volatility is more challenging than it is during times of persistent general trends. According to the real estate market cycle, this study focuses on the three times of extreme volatility. It was established that the LSTM, VAR, and ARIMA models have strong predictive capacity by successfully forecasting the trading price index during a period of unusually high volatility. We explores potential synergies between the hybrid artificial intelligence learning model and the conventional statistical prediction model.

A Novel Framework Based on CNN-LSTM Neural Network for Prediction of Missing Values in Electricity Consumption Time-Series Datasets

  • Hussain, Syed Nazir;Aziz, Azlan Abd;Hossen, Md. Jakir;Aziz, Nor Azlina Ab;Murthy, G. Ramana;Mustakim, Fajaruddin Bin
    • Journal of Information Processing Systems
    • /
    • 제18권1호
    • /
    • pp.115-129
    • /
    • 2022
  • Adopting Internet of Things (IoT)-based technologies in smart homes helps users analyze home appliances electricity consumption for better overall cost monitoring. The IoT application like smart home system (SHS) could suffer from large missing values gaps due to several factors such as security attacks, sensor faults, or connection errors. In this paper, a novel framework has been proposed to predict large gaps of missing values from the SHS home appliances electricity consumption time-series datasets. The framework follows a series of steps to detect, predict and reconstruct the input time-series datasets of missing values. A hybrid convolutional neural network-long short term memory (CNN-LSTM) neural network used to forecast large missing values gaps. A comparative experiment has been conducted to evaluate the performance of hybrid CNN-LSTM with its single variant CNN and LSTM in forecasting missing values. The experimental results indicate a performance superiority of the CNN-LSTM model over the single CNN and LSTM neural networks.

딥러닝을 이용한 풍력 발전량 예측 (Prediction of Wind Power Generation using Deep Learnning)

  • 최정곤;최효상
    • 한국전자통신학회논문지
    • /
    • 제16권2호
    • /
    • pp.329-338
    • /
    • 2021
  • 본 연구는 풍력발전의 합리적인 운영 계획과 에너지 저장창치의 용량산정을 위한 풍력 발전량을 예측한다. 예측을 위해 물리적 접근법과 통계적 접근법을 결합하여 풍력 발전량의 예측 방법을 제시하고 풍력 발전의 요인을 분석하여 변수를 선정한다. 선정된 변수들의 과거 데이터를 수집하여 딥러닝을 이용해 풍력 발전량을 예측한다. 사용된 모델은 Bidirectional LSTM(:Long short term memory)과 CNN(:Convolution neural network) 알고리즘을 결합한 하이브리드 모델을 구성하였으며, 예측 성능 비교를 위해 MLP 알고리즘으로 이루어진 모델과 오차를 비교하여, 예측 성능을 평가하고 그 결과를 제시한다.

인공위성 자료와 궤적분석 모델을 이용한 화산재 모니터링 (Monitoring of the Volcanic Ash Using Satellite Observation and Trajectory Analysis Model)

  • 이권호;장은숙
    • 대한원격탐사학회지
    • /
    • 제30권1호
    • /
    • pp.13-24
    • /
    • 2014
  • 인공위성 원격탐사 자료는 화산재 모니터링을 위한 중요한 도구로서 사용되어 왔다. 본 연구는 최근에 발생한 주요 화산폭발 사례(2008년 Chait$\acute{e}$n 화산, 2010년 Eyjafjallaj$\ddot{o}$kull 화산, 2011년 Shinmoedake 화산)를 대상으로 인공위성자료를 이용한 화산재 모니터링과 궤적분석 모델링을 수행하였다. 이를 위하여 Moderate Resolution Imaging Spectro-radiometer(MODIS) 인공위성 관측자료로부터 적외선 밝기온도차 기법을 적용하여 산출된 화산재 탐지 산출물과 HYbrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT) 모델을 이용한 전진궤적분석자료를 상호 비교하였다. 그 결과, 인공위성을 이용한 화산재 탐지 산출물은 모델링한 궤적분석 결과와 상호간에 관련성이 높게 나타났다. 이러한 결과는 인공위성 관측자료와 모델링의 통합분석자료가 화산재 감시 및 예측을 위하여 중요한 역할을 수행할 수 있는 가능성을 제시한다.