• Title/Summary/Keyword: Hybrid Photoelasticity

Search Result 13, Processing Time 0.02 seconds

Hybrid Stress Analysis around a Circular Hole in a Tensile Plate by Use of Phase Shifting Photoelasticity (광탄성 위상이동법에 의한 인장시편 원형 구멍주위 하이브리드 응력해석)

  • Baek, Tae-Hyun;Lee, Choon-Tae;Yang, Min-Bok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.1
    • /
    • pp.15-22
    • /
    • 2007
  • A hybrid experimental-numerical method is presented for determining the stresses around a circular hole in a finite-width, tensile loaded plate. Measured fringe orders along straight lines provided the input information on the external boundary of the hybrid element. In order to see the effects of varying stress field, different numbers of terms in a power-series representation of the complex type conformal mapping stress function were tested. For qualitative comparison, actual isochromatic fringes were compared with reconstructed theoretical fringes using stress-optic law. For quantitative comparison, relative errors and standard deviations with respective to relative errors were analyzed for all measured points by changing the number of terms of stress function. The hybrid results are highly comparable with those predicted by FEA. The results show that this approach is effective and promising because isochromatic data along the straight lines in photoelasticity can be conveniently measured by use of phase shifting photoelasticity.

Dynamic Slant Interface Crack Propagation Behavior under Initial Impact Loading (초기 혼합모드 동적 하중을 받는 경사계면균열의 동적 전파거동)

  • Lee, Eok-Seop;Park, Jae-Cheol;Yun, Hae-Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.146-151
    • /
    • 2001
  • The effects of slant interface in the hybrid specimen on the dynamic crack propagation behavior have been investigated using dynamic photoelasticity. The dynamic photoelasticity with the aid of Cranz-Shardin type high speed camera system is utilized to record the dynamic stress field around the dynamically propagating inclined interface crack tip in the three point bending specimens. The dynamic load is applied by a hammer dropped from 0.08m high without initial velocity. The dynamic crack propagation velocities and dynamic stresses field around the interface crack tips are investigated. Theoretical dynamic isochromatic fringe loops are compared with the experimental reults. It is interesting to note that the crack propagating velocity becomes comparable to the Rayleigh wave speed of the soft material of a specimen when slant angle decreases.

  • PDF

Influence of Stress Shape Function on Analysis of Contact Problem Using Hybrid Photoelasticity (광탄성 실험 하이브리드 법에 의한 접촉응력 해석시 응력형상함수의 영향)

  • Shin, Dong-Chul;Hawong, Jai-Sug
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.345-352
    • /
    • 2013
  • In this research, a study on stress shape functions was conducted to analyze the contact stress problem by using a hybrid photoelasticity. Because the contact stress problem is generally solved as a half-plane problem, the relationship between two analytical stress functions, which are compositions of the Airy stress function, was similar to one of the crack problem. However, this relationship in itself could not be used to solve the contact stress problem (especially one with singular points). Therefore, to analyze the contact stress problem more correctly, stress shape functions based on the condition of two contact end points had to be considered in the form of these two analytical stress functions. The four types of stress shape functions were related to the stress singularities at the two contact end points. Among them, the primary two types used for the analysis of an O-ring were selected, and their validities were verified in this work.

Analysis of Stress Distribution around a Central Crack Tip in a Tensile Plate Using Phase-Shifting Photoelasticity and a Power Series Stress Function (위상이동 광탄성법과 멱급수형 응력함수를 이용한 인장시편 중앙 균열선단 주위 응력장 해석)

  • Baek, Tae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • This paper presents stress distribution around a central crack tip in a tensile plate using phase-shifting photoelasticity and a power series stress function. Isochromatic data along the straight lines far from the crack tip were obtained by phase shifting photoelasticity and were used as input data of the hybrid experimental analysis. By using the complex-type power series stress equations, the photoelastic stress distribution fields in the vicinity of the crack and the mode I stress intensity factor were obtained. With the help of image processing software, accuracy and reliability was enhanced by twice multiplying and sharpening the measured isochromatics. Actual and reconstructed fringes were compared qualitatively. For quantitative comparison, percentage errors and standard deviations of the percentage errors were calculated for all measured input data by varying the number of terms in the stress function. The experimental results agreed with those predicted by finite element analysis and empirical equation within 2 percent error.

Hybrid Photoelastic Stress Analysis Around a Central Crack Tip in a Tensile Loaded Plate Using Isochromatic Data (등색프린지 데이터를 이용한 인장하중 판재 중앙 균열선단 주위의 하이브리드 광탄성 응력장 해석)

  • Baek, Tae-Hyun;Chen, Lei
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1200-1207
    • /
    • 2007
  • An experimental test is presented for photoelastic stress analysis around a crack tip in tensile loaded plate. The hybrid method coupling photoelastsic fringe inputs calculated by finite element method and complex variable formulations involving conformal mappings and analytical continuity is used to calculate full-field stress around the crack tip in uniaxially loaded, finite width tensile plate. In order to accurately compare calculated fringes with experimental ones, both actual and regenerated photoelastic fringe patterns are two times multiplied and sharpened by digital image processing. Regenerated fringes by hybrid method are quite comparable to actual fringes. The experimental results indicate that Mode I stress intensity factor analyzed by the hybrid method are accurate within three percent compared with ones obtained by empirical equation and finite element analysis.

Comparison of Full-Field Stresses around an Inclined Crack Tip by Using Fringe Data of Finite Element Method with Photoelastic Experiment

  • Baek, Tae-Hyun;Kim, Myung-Soo;Chen, Lei
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.6
    • /
    • pp.557-562
    • /
    • 2009
  • Abrupt change of cross-section in mechanical parts is one of significant causes of structural fracture. In this paper, a hybrid method is employed to analyze the stress distribution of a discontinuous plate. The plate with an inclined crack is utilized in our experiment and the stress field in the vicinity of crack tip is calculated through isochromatic fringe order of given points. This calculation can be made handy through least-squares method integrated with complex power series representation(Laurent series) implemented on a computer program for high-speed processing. In order to accurately compare calculated results with experimental ones, both of actual and regenerated photoelastic fringe patterns are doubled and sharpened by digital image processing. The experiment results show that regenerated patterns obtained by hybrid method are quite comparable to actual patterns.

Hybrid Full-field Stress Analysis around a Circular Hole in a Tensile Loaded Plate using Conformal Mapping and Photoelastic Experiment (등각사상 맵핑 및 광탄성 실험법에 의한 원형구명 주위의 하이브리드 응력장 해석)

  • Baek, Tae-Hyun;Kim, Myung-Soo;Rhee, Ju-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.988-1000
    • /
    • 1999
  • An experimental study is presented for the effect of number of terms of a pewee series type stress function on stress analysis around a hole in tensile loaded plate. The hybrid method coupling photoelastsic data inputs and complex variable formulations involving conformal mappings and analytical continuity is used to calculate tangential stress on the boundary of the hole in uniaxially loaded, finite width tensile plate. In order to measure isochromatic data accurately, actual photoelastic fringe patterns are two times multiplied and sharpened by digital image processing. For qualitative comparison, actual fringes are compared with calculated ones. For quantitative comparison, percentage errors and standard deviations with respect to percentage errors are caculated for all measured points by changing the number of terms of stress function. The experimental results indicate that stress concentration factors analyzed by the hybrid method are accurate within three percent compared with ones obtained by theoretical and finite element analysis.

Stress Distribution in the Vicinity of a Crack Tip in a Plate under Tensile Load Using Displacement Data of Finite Element Method (유한요소 변위값을 이용한 인장하중 판재 균열선단 주위의 응력분포 해석)

  • Baek, Tae-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.84-91
    • /
    • 2008
  • Due to the complexity of the engineering problems, it is difficult to obtain directly the stress field around the crack tip by theoretical derivation. In the paper, the hybrid method is employed to calculate full-field stress around the crack tip in uni-axially leaded finite width tensile plate, using the displacement data of given points calculated by finite element method as input data. The method uses complex variable formulations involving conformal mappings and analytical continuity. In order to accurately compare calculated fringes with experimental ones, both actual and reconstructed photoelastic fringe patterns are two times multiplied and sharpened by digital image processing. Reconstructed fringes by hybrid method are quite comparable to actual fringes. The experimental results indicate that Mode I stress intensity factor analyzed by the hybrid method are accurate within a few percent compared with ones obtained by empirical equation and finite element analysis.