• Title/Summary/Keyword: Hybrid Low Frequency Mode

Search Result 32, Processing Time 0.024 seconds

Hybrid Rocket Instability II (하이브리드 로켓 불안정성 II)

  • Lee, Jung-Pyo;Rhee, Sun-Jae;Kim, Young-Nam;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Gon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.86-90
    • /
    • 2012
  • In this paper, the combustion instabilities which may occur in the hybrid rocket were studied. The rocket combustor where the vortexes can be generated was designed, and the experiments were performed. The investigations about characteristics on the presence of the diaphragm, the length of the fuel, the diameter of the fuel port, the diameter of the diaphragm, the diameter of the nozzle throat, and the variation of the Ox massflow rate were conducted. The main resonant frequency of the combustion pressure is regarded by the Vortex shedding mode, and it is considered that the other resonant frequency of the pressure fluctuation is hybrid low frequency, or helmholtz mode.

  • PDF

Localization of Ultra-Low Frequency Waves in Multi-Ion Plasmas of the Planetary Magnetosphere

  • Kim, Eun-Hwa;Johnson, Jay R.;Lee, Dong-Hun
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.289-295
    • /
    • 2015
  • By adopting a 2D time-dependent wave code, we investigate how mode-converted waves at the Ion-Ion Hybrid (IIH) resonance and compressional waves propagate in 2D density structures with a wide range of field-aligned wavenumbers to background magnetic fields. The simulation results show that the mode-converted waves have continuous bands across the field line consistent with previous numerical studies. These waves also have harmonic structures in frequency domain and are localized in the field-aligned heavy ion density well. Our results thus emphasize the importance of a field-aligned heavy ion density structure for ultra-low frequency wave propagation, and suggest that IIH waves can be localized in different locations along the field line.

Model reduction and compensation of FE model for Hybrid modelling (혼합모델링을 위한 유한요소모델의 자유도 축소와 보상)

  • 이창호;이시복;이인갑
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.419-425
    • /
    • 1998
  • This paper presents a method of enhancing the accuracy of hybrid modelling that predicts dynamic characteristics of the coupled structure by synthesizing after FE analysis and vibration experimental analysis of the relevant individual substructure. Since most FE models in engineering problems are very large, dynamic analysis with the full FE model is costly. Frequency response function(FRF) synthesis after reducing the FE model can reduce this computational cost but introduce mode truncation error similarly in the case of considering only low-frequency mode after eigensolutions of the complete structure. This paper introduces a FRF of FE model for hybrid FRF synthesis, which is reduced by using IIRS methods and compensated through eigensolutions of the reduced model, and shows the effectiveness of the presented method.

  • PDF

Low frequency Instability in Hybrid Rocket Post-chamber Configuration (연소실 형상 변화에 의한 하이브리드 로켓의 저주파수 연소불안정)

  • Park, Kyungsu;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.29-36
    • /
    • 2014
  • Hybrid rocket displays many different low frequency pressure oscillations during combustion. Thermal lag between solid and gas phase is the primary mechanism to trigger low frequency pressure oscillations of around 10Hz, and Helmholtz or $L^*$ mode also produces other types of low frequency oscillations above 10 Hz which is associated with the change in combustion volume. Since the flow characteristics in hybrid rocket is very similar to those in solid rocket combustion, it is not surprising to observe similar pressure oscillation behaviors. Experimental test shows that combustion pressure suddenly turns into to a big amplitude oscillation around 10Hz then followed by returning to an original pressure level after a short period combustion. Further investigations show that this instability is independent of the change in O/F ratio at all. One of the possible candidates is the vortex shedding dynamics over the backward step in the post combustion chamber. It is required to investigate the low frequency oscillation mechanism in the future study.

Experimental Investigation of a Regression rate On Hybrid Rocket Engine

  • Park, J. W.;S. Krishnan;Lee, C. W.;M. W. Yoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.524-527
    • /
    • 2004
  • Hybrid rocket had many advantage with compared to solid and liquid rockets. However, the engines have not yet been used in practical rocket systems, due mainly to the disadvantage of hybrid combustion, such as low fuel regression rate. In this study, lab-scale hybrid motor was designed and manufactured. And the methods of regression rate improvement were considered. Test firings with thrusts up to 300 N were conducted with GOX and transparent PMMA. Thrust was calculated with the pressure of the combustion chamber and the regression rate was measured in with variation of oxidizer flow rate. The regression rates showed a strong dependency on GOX mass flux. The frequency analysis technique of the bulk-mode oscillation of motor was applied to a hybrid rocket motor and was based on the principle that this frequency was inversely proportional to the square root of the chamber volume. Several problems and solutions of operating hybrid rocket were presented.

  • PDF

Modulation Depth Dependence of Timing Jitter and Amplitude Modulation in Mode-Locked Semiconductor Lasers (모드잠김 반도체 laser의 타이밍 지터및 크기 변조의 변조 신호 크기 의존성)

  • Kim, Ji-hoon;Bae, Seong-Ju;Lee, Yong-Tak
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.276.2-278
    • /
    • 2000
  • In a recent years, a number of approaches have been studied, including passive, active, and hybrid mode-locking of semi-conductor lasers for short pulse generation and research has been devoted to achieve low timing-jitter operation since the timing jitter is unfavorable for system applications. Among the methods of mode locking, passive mode locking does not need external rf drives, and therefore the operation and fabrication procedures are simplified. In spite of these attractive advantages of passive mode-locked laser, it has critical drawbacks such as large timing jitter and the difficulty in synchronization with external circuits. Their inherent large timing jitter value was shown to be suppressed to certain levels by means of hybrid mode-locking technique$^{(1)}$ , where the saturable absorber section was modulated by an external signal with the cavity round trip frequency. Furthermore, the subharmonic mode-locking (SHML) technique alleviates the restrictions of high speed driving electronics. It has been demonstrated experimentally$^{(1)}$ that the hybrid subharmonic mode-locking technique has lead to significant reduction of the timing jitter. (omitted)

  • PDF

SUNSPOT AREA PREDICTION BASED ON COMPLEMENTARY ENSEMBLE EMPIRICAL MODE DECOMPOSITION AND EXTREME LEARNING MACHINE

  • Peng, Lingling
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.6
    • /
    • pp.139-147
    • /
    • 2020
  • The sunspot area is a critical physical quantity for assessing the solar activity level; forecasts of the sunspot area are of great importance for studies of the solar activity and space weather. We developed an innovative hybrid model prediction method by integrating the complementary ensemble empirical mode decomposition (CEEMD) and extreme learning machine (ELM). The time series is first decomposed into intrinsic mode functions (IMFs) with different frequencies by CEEMD; these IMFs can be divided into three groups, a high-frequency group, a low-frequency group, and a trend group. The ELM forecasting models are established to forecast the three groups separately. The final forecast results are obtained by summing up the forecast values of each group. The proposed hybrid model is applied to the smoothed monthly mean sunspot area archived at NASA's Marshall Space Flight Center (MSFC). We find a mean absolute percentage error (MAPE) and a root mean square error (RMSE) of 1.80% and 9.75, respectively, which indicates that: (1) for the CEEMD-ELM model, the predicted sunspot area is in good agreement with the observed one; (2) the proposed model outperforms previous approaches in terms of prediction accuracy and operational efficiency.

A Gear Changing Techniques of Inverter for Variable Speed Drives on Traction Motor (견인용 전동기의 가변속 운전을 위한 인버터의 PWM패턴 절환 기법)

  • Seo, Young-Min;Jang, Dong-Ryul;Park, Hae-Dong;Hong, Soon-Chan;Park, Young-Jeen;Song, Joong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1947-1950
    • /
    • 1998
  • GTO inverter used for traction motor drives includes harmonics in the output current and torque by the limitation of switching frequency. However, the hybrid PWM method, using SPWM in low frequency range and SHE PWM in upper frequency range, can be obtained the relative less harmonic characteristic. The transient reaction, which the magnetic flux and the torque is altered and instantly the large current is flowed, may be produced at the mode change. This paper presents the techniques which can reduce the transient reactions produced in the gear changing of inverter fed traction motor drives operating in the hybrid PWM. The results are verified by the simulations.

  • PDF

Enhanced spontaneous emissions from suprathermal populations in Kappa distributed plasmas

  • Kim, Sunjung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.56.3-56.3
    • /
    • 2018
  • The present study formulates the theory of spontaneously emitted electromagnetic fluctuations in magnetized plasmas containing particles with an anisotropic suparthermal (bi-Kappa) velocity distribution function. The formalism is general applying for an arbitrary wave vector orientation and wave polarization, and for any wave-frequency range. As specific applications, the high-frequency electromagnetic fluctuations emitted in the upper-hybrid and multiple harmonic electron cyclotron frequency range are evaluated. The fluctuations for low-frequency are also applied, which include the kinetic $Alfv\acute{e}n$, fast magnetosonic/whistler, kinetic slow mode, ion Bernstein cyclotron modes, and higher-order modes. The model predictions are confirmed by a comparison with particle-in-cell simulations. The study describes how energetic particles described by kappa velocity distribution functions influence the spectrum of high and low frequency fluctuations in magnetized plasmas. The new formalism provides quantitative analysis of naturally occurring electromagnetic fluctuations, and contribute to an understanding of the electromagnetic fluctuations observed in space plasmas, where kappa-distributed particles are ubiquitous.

  • PDF

Evaluation of ECCD power requirement for neoclassical tearing modes suppression in the CFETR hybrid scenario

  • L.H. He;P.W. Zheng ;T. Yu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2941-2951
    • /
    • 2023
  • The optimal minimum ECCD power is evaluated numerically for completely suppressing the 3/2 and 2/1 NTMs in the CFETR hybrid scenario. For two typical frequencies of ECCD sources launching from two upper launcher (UL) ports, fec = 210 GHz and 240 GHz with O1-mode, UL1: (Ri, Zi) = (8.47, 5.7) m and UL2: (Ri, Zi) = (8.2, 4.5) m, higher frequency of ECCD source launching from the UL2 port is better than that low frequency counterpart from the UL1 port. Using 240 GHz ECCD source launching from the UL2 port, the minimum power required to fully suppress the two NTMs with precise ECCD alignment is 12.4 MW and 16.7 MW, respectively. When good alignment cannot be achieved, the results suggest that the misalignment should not exceed 0.02α, preferably 0.015α, corresponding to 4.4 cm and 3.3 cm. Considering engineering difficulty of high-frequency gyrotron sources, the optimal minimum ECCD power with the 210 GHz source launching from the UL2 port is 17.9 MW and 20.6 MW for completely suppressing the 3/2 and 2/1 NTMs, respectively. In view of this, it is a good choice to select the 210 GHz ECCD source launching from the UL2 port in the short and medium term.