DOI QR코드

DOI QR Code

Evaluation of ECCD power requirement for neoclassical tearing modes suppression in the CFETR hybrid scenario

  • L.H. He (School of Nuclear Science and Technology, University of South China) ;
  • P.W. Zheng (School of Nuclear Science and Technology, University of South China) ;
  • T. Yu (School of Nuclear Science and Technology, University of South China)
  • Received : 2022.10.17
  • Accepted : 2023.04.29
  • Published : 2023.08.25

Abstract

The optimal minimum ECCD power is evaluated numerically for completely suppressing the 3/2 and 2/1 NTMs in the CFETR hybrid scenario. For two typical frequencies of ECCD sources launching from two upper launcher (UL) ports, fec = 210 GHz and 240 GHz with O1-mode, UL1: (Ri, Zi) = (8.47, 5.7) m and UL2: (Ri, Zi) = (8.2, 4.5) m, higher frequency of ECCD source launching from the UL2 port is better than that low frequency counterpart from the UL1 port. Using 240 GHz ECCD source launching from the UL2 port, the minimum power required to fully suppress the two NTMs with precise ECCD alignment is 12.4 MW and 16.7 MW, respectively. When good alignment cannot be achieved, the results suggest that the misalignment should not exceed 0.02α, preferably 0.015α, corresponding to 4.4 cm and 3.3 cm. Considering engineering difficulty of high-frequency gyrotron sources, the optimal minimum ECCD power with the 210 GHz source launching from the UL2 port is 17.9 MW and 20.6 MW for completely suppressing the 3/2 and 2/1 NTMs, respectively. In view of this, it is a good choice to select the 210 GHz ECCD source launching from the UL2 port in the short and medium term.

Keywords

Acknowledgement

This work is supported by the National MCF Energy R & D Program (Grant Nos. 2022YFE03070003), the National Natural Science Foundation of China (Grant Nos. 12075114), the Natural Science Foundation of Hunan Province (No. 2021JJ30569), the Excellent Youth Project of Hunan Education Department (No.19B483), the Doctoral Initiation Fund Project of University of South China (No. 190XQD114), and the Opening Project of Nuclear Fuel Cycle Technology and Equipment, University of South China (No. 2019KFZ02, 2019KFQ12).

References

  1. Yuanxi Wan, Jiangang Li, Yong Liu, Xiaolin Wang, Vincent Chan, Changan Chen, Xuru Duan, Peng Fu, Xiang Gao, Kaiming Feng, Overview of the present progress and activities on the CFETR, Nucl. Fusion 57 (2017), 102009. 
  2. G. Zhuang, G.Q. Li, J. Li, Y.X. Wan, Y. Liu, X.L. Wang, Y.T. Song, V. Chan, Q.W. Yang, B.N. Wan, X.R. Duan, P. Fu, B.J. Xiao, The CFETR design team, progress of the CFETR design, Nucl. Fusion 59 (2019), 112010. 
  3. Jinxing Zheng, Jinggang Qin, Kun Lu, Min Xu, Xuru Duan, Guosheng Xu, Jiansheng Hu, Xianzu Gong, Qing Zang, Zhihong Liu, Liang Wang, Rui Ding, Jiming Chen, Pengyuan Li, Lei Xue, Lijun Cai, Yuntao Song, Recent progress in Chinese fusion research based on superconducting tokamak configuration, Innovation 3 (2022), 100269. 
  4. J.L. Chen, V.C. Chan, X. Jian, X.J. Zhang, Q.R. Ren, G.Q. Li, C.X. Zhou, CFETR Physics Team, Integrated modeling of CFETR hybrid scenario plasmas, Nucl. Fusion 61 (2021), 046002. 
  5. M. Henderson, G. Saibene, C. Darbos, D. Farina, L. Figini, M. Gagliardi, F. Gandini, T. Gassmann, G. Hanson, A. Loarte, T. Omori, E. Poli, D. Purohit, K. Takahashi, The targeted heating and current drive applications for the ITER electron cyclotron system, Phys. Plasmas 22 (2015), 021808. 
  6. W.E.I. Wei, Xiaojie Wang, L.I. Miaohui, D.I.N.G. Bojiang, Evaluation of electron cyclotron current drive performance for CFETR, Plasma Sci. Technol. 21 (2019), 065101. 
  7. L.H. He, P.W. Zheng, Z.H. Wang, J.L. Chen, T. Yu, Numerical investigation of ECCD under the CFETR concept design parameters, Fusion Eng. Des. 182 (2022), 113236. 
  8. E. Poli, G. Tardini, H. Zohm, E. Fable, D. Farina, L. Figini, N.B. Marushchenko, L. Porte, Electron-cyclotron-current-drive efficiency in DEMO plasmas, Nucl. Fusion 53 (2013), 013011. 
  9. R.J. La Haye, Neoclassical tearing modes and their control, Phys. Plasmas 13 (2006), 055501. 
  10. C.C. Hegna, J.D. Callen, On the stabilization of neoclassical magnetohydrodynamic tearing modes using localized current drive or heating, Phys. Plasmas 4 (1997) 2940. 
  11. H. Zohm, G. Gantenbein, F. Leuterer, M. Maraschek, E. Poli, L. Urso, Control of NTMs by ECCD on ASDEX Upgrade in view of ITER application, Plasma Phys. Contr. Fusion 49 (2007) B341. 
  12. Jing-Chun Li, Xue-Yu Gong, Jia-Qi Dong, Jun Wang, Lan Yin, Numerical analysis of the optimized performance of the electron cyclotron wave system in a HL-2M tokamak, Chin. Phys. B 25 (2016), 045201. 
  13. A.A. Molavi-Choobini, A. Naghidokht, Z. Karami, Study of lower hybrid current drive for the demonstration reactor, Nucl. Eng. Technol. 48 (2016) 711-718.  https://doi.org/10.1016/j.net.2016.02.003
  14. Kyungjin Kim, Na Yong-Su, Minhwa Kim, Y.M. Jeon, K.D. Lee, J.G. Bak, M.J. Choi, G.S. Yun, S.G. Lee, S. Park, J.H. Jeong, L. Terzolo, D.H. Na, M.G. Yoo, KSTAR Team, Experiment and simulation of tearing mode evolution with electron cyclotron current drive in KSTAR, Curr. Appl. Phys. 15 (2015) 547-554.  https://doi.org/10.1016/j.cap.2015.01.032
  15. Kyungjin Kim, Na Yong-Su, Hyun-Seok Kim, M. Maraschek, E. Poli, J. Stober, H. Zohm, F. Felici, O. Sauter, Y.S. Park, L. Terzolo, ASDEX Upgrade team, TCV Team, Modeling of neoclassical tearing mode stabilization by electron cyclotron heating and current drive in tokamak plasmas, Curr. Appl. Phys. 16 (2016) 867-875.  https://doi.org/10.1016/j.cap.2016.04.015
  16. M. Kim, Kyungjin Kim, M.G. Yoo, D.H. Na, T.S. Hahm, Y.S. Hwang, Na Yong-Su, Numerical study on neoclassical tearing mode stabilization via minimum seeking method for the island width growth rate, Nucl. Fusion 55 (2015), 023006. 
  17. M. Kim, Na Yong-Su, Kyungjin Kim, H.-S. Kim, D.H. Na, M.G. Yoo, T.S. Hahm, Y.S. Hwang, Reply to 'Comment on "Numerical study on neoclassical tearing mode stabilization via minimum seeking method for the island width growth rate", Nucl. Fusion 56 (2016), 038002. 
  18. N. Bertelli, G. Wallace, P.T. Bonoli, R.W. Harvey, A.P. Smirnov, S.G. Baek, R.R. Parker, C.K. Phillips, E.J. Valeo, J.R. Wilson, J.C. Wright, The effects of the scattering by edge plasma density fluctuations on lower hybrid wave propagation, Plasma Phys. Contr. Fusion 55 (2009), 074003. 
  19. E. Mazzucato, I. Fidone, G. Granata, Damping of electron cyclotron waves in dense plasmas of a compact ignition tokamak, Phys. Fluids 30 (1987) 3745. 
  20. Y.R. Lin-Liu, V.S. Chan, R. Prater, Electron cyclotron current drive efficiency in general tokamak geometry, Phys. Plasmas 10 (2003) 4064. 
  21. N.B. Marushchenko, H. Maassberg, Yu Turkin, Electron cyclotron current drive calculated for ITER conditions using different models, Nucl. Fusion 48 (2008), 054002. 
  22. N.B. Marushchenko, H. Maassberg, Yu Turkin, Corrections to the paper 'electron cyclotron current drive calculated for ITER conditions using different models, Nucl. Fusion 49 (2009), 129801. 
  23. Jingchun Li, Chijie Xiao, Zhihong Lin, Dongjian Liu, Xiaoquan Ji, Xiaogang Wang, GTC simulation of linear stability of tearing mode and a model magnetic island stabilization by ECCD in toroidal plasma, Phys. Plasmas 27 (2020), 042506. 
  24. R.H. Cohen, Effect of trapped electrons on current drive, Phys. Fluids 30 (1987) 2442. 
  25. R. Prater, D. Farina, Yu Gribov, R.W. Harvey, A.K. Ram, Y.-R. Lin-Liu, E. Poli, A.P. Smirnov, F. Volpe, E. Westerhof, A. Zvonkov, Benchmarking of codes for electron cyclotron heating and electron cyclotron current drive under ITER conditions, Nucl. Fusion 48 (2008), 035006. 
  26. N. Bertelli, D. De Lazzari1, E. Westerhof, Requirements on localized current drive for the suppression of neoclassical tearing modes, Nucl. Fusion 51 (2011), 103007. 
  27. D. De Lazzari, E. Westerhof, On the merits of heating and current drive for tearing mode stabilization, Nucl. Fusion 49 (2009), 075002. 
  28. R.W. Harvey, M.G. McCoy, G.D. Kerbel, Power dependence of electron-cyclotron current drive for low and high-field absorption in tokamaks, Phys. Rev. Lett. 62 (1989) 426. 
  29. T. Liu, Z.X. Wang, L. Wei, J.L. Wang, Prevention of electron cyclotron current drive triggering explosive bursts in reversed magnetic shear tokamak plasmas for disruption avoidance, Nucl. Fusion 62 (2022), 056018. 
  30. W.K. Tang, Z.X. Wang, L. Wei, J.L. Wang, S.S. Lu, Control of neoclassical tearing mode by synergetic effects of resonant magnetic perturbation and electron cyclotron current drive in reversed magnetic shear tokamak plasmas, Nucl. Fusion 60 (2020), 026015. 
  31. C.C. Petty, M.E. Austin, C.T. Holcomb, R.J. Jayakumar, R.J. La Haye, T.C. Luce, M.A. Makowski, P.A. Politzer, M.R. Wade, Magnetic-flux pumping in high-performance, stationary plasmas with tearing modes, Phys. Rev. Lett. 102 (2009), 045005. 
  32. S.C. Jardin, N. Ferraro, I. Krebs, Self-organized stationary states of tokamaks, Phys. Rev. Lett. 115 (2015), 215001. 
  33. Minho Park, Na Yong-Su, Jaemin Seo, M. Kim, Kyungjin Kim, Effect of electron cyclotron beam width to neoclassical tearing mode stabilization by minimum seeking control in ITER, Nucl. Fusion 58 (2018), 016042. 
  34. Heinz Isliker, Ioanna Chatziantonaki, Christos Tsironis, Loukas Vlahos, Electron-cyclotron wave propagation, absorption and current drive in the presence of neoclassical tearing modes, Plasma Phys. Contr. Fusion 54 (2012), 095005. 
  35. O. Chella, S. Alberti, I. Furno, T. Goodman, O. Maj, G. Merlo, E. Poli, P. Ricci, F. Riva, H. Weber, the TCV Team, Millimeter-wave beam scattering and induced broadening by plasma turbulence in the TCV tokamak, Nucl. Fusion 61 (2021), 066011. 
  36. A.H. Reiman, N.J. Fisch, Suppression of tearing modes by radio frequency current condensation, Phys. Rev. Lett. 121 (2018) 225001. 
  37. R.J. La Haye, J.R. Ferron, D.A. Humphreys, T.C. Luce, C.C. Petty, R. Prater, E.J. Strait, A.S. Welander, Requirements for alignment of electron cyclotron current drive for neoclassical tearing mode stabilization in ITER, Nucl. Fusion 48 (2008), 054004. 
  38. E. Poli, C. Angioni, F.J. Casson, D. Farina, L. Figini, T.P. Goodman, O. Maj, O. Sauter, H. Weber, H. Zohm, G. Saibene, M.A. Henderson, On recent results in the modelling of neoclassical-tearing-mode stabilization via electron cyclotron current drive and their impact on the design of the upper EC launcher for ITER, Nucl. Fusion 55 (2015), 013023. 
  39. Jing-Chun Li, Jia-Qi Dong, Xiao-Quan Ji, You-Jun Hu, Neoclassical tearing mode stabilization by electron cyclotron current drive for HL-2M tokamak, Chin. Phys. B 30 (2021), 075203. 
  40. F.M. Poli, E.D. Fredrickson, M.A. Henderson, S.-H. Kim, N. Bertelli, E. Poli, D. Farina, L. Figini, Electron cyclotron power management for control of neoclassical tearing modes in the ITER baseline scenario, Nucl. Fusion 58 (2018), 016007. 
  41. R. Prater, R.J. La Haye, J. Lohr, T.C. Luce, C.C. Petty, J.R. Ferron, D.A. Humphreys, E.J. Strait, F.W. Perkins, R.W. Harvey, Discharge improvement through control of neoclassical tearing modes by localized ECCD in DIII-D, Nucl. Fusion 43 (2003) 1128. 
  42. R. Prater, Heating and current drive by electron cyclotron waves, Phys. Plasmas 11 (2004) 2349. 
  43. R.J. La Haye, D.A. Humphreys, J.R. Ferron, T.C. Luce, F.W. Perkins, C.C. Petty, R. Prater, E.J. Strait, A.S. Welander, Higher stable beta by use of pre-emptive electron cyclotron current drive on DIII-D, Nucl. Fusion 45 (2005) L37. 
  44. E. Kolemen, A.S. Welander, R.J. La Haye, N.W. Eidietis, D.A. Humphreys, J. Lohr, V. Noraky, B.G. Penaflor, R. Prater, F. Turco, State-of-the-art neoclassical tearing mode control in DIII-D using real-time steerable electron cyclotron current drive launchers, Nucl. Fusion 54 (2014), 073020. 
  45. R.J. La Haye, R. Prater, R.J. Buttery, N. Hayashi, A. Isayama, M.E. Maraschek, L. Urso, H. Zohm, Cross-machine benchmarking for ITER of neoclassical tearing mode stabilization by electron cyclotron current drive, Nucl. Fusion 46 (2006) 451. 
  46. O. Sautor, M.A. Henderson, G. Ramponi, H. Zohm, C. Zucca, On the requirements to control neoclassical tearing modes in burning plasmas, Plasma Phys. Contr. Fusion 52 (2010), 025002. 
  47. E. Westerhof, Tearing mode stabilization by local current density perturbations, Nucl. Fusion 30 (1990) 1143. 
  48. O. Sauter, R.J. Buttery, R. Felton, T.C. Hender, D F Howell and contributors to the EFDA-JET Workprogramme, Marginal β-limit for neoclassical tearing modes in JET H-mode discharges, Plasma Phys. Contr. Fusion 44 (2002) 1999.