• Title/Summary/Keyword: Hybrid Intelligent Algorithm

Search Result 190, Processing Time 0.022 seconds

UHGA channel assignment can be applied under various environments (다양한 환경에 적용이 가능한 UHGA 채널 할당 방식)

  • Heo, Seo-Jung;Son, Dong-Cheol;Kim, Chang Suk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.487-493
    • /
    • 2013
  • As the spread of smart devices that service variety of content, limited mobile terminal channel assignment problem has intensified. In the channel assignment in mobile networks mobile switching center at the request belongs to each base station allocates the channel to the mobile station. This effectively allocate the limited channels of various methods have been proposed for, in this case a hybrid channel allocation using genetic algorithms UHGA (Universal Hybrid Channel Assignment using Genetic Algorithm) in rural areas or urban areas, such as universal network applied to a variety of environments that the efficiency is verified through simulation.

Generation of SAC using a ASMOD and a Hybrid curve approximation (ASMOD와 혼합 곡선 근사법을 이용한 SAC의 생성)

  • 김현철;이경선;김수영
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.435-438
    • /
    • 1997
  • This paper presents the process generating a SAC(Sectional Area Cure) by using ASMOD(Adaptive Spline Modeling of Observation Data). That is, we define SACs of real ships as B-spline curves by a hybrid cure approximation(which is the combination method of a B-spline fitting method and a genetic algorithm) and accumulate a database of control points. Then we let ASMOD learn from the correlation principal dimensions with control points.

  • PDF

A Biologically Inspired Intelligent PID Controller Tuning for AVR Systems

  • Kim Dong-Hwa;Cho Jae-Hoon
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.5
    • /
    • pp.624-636
    • /
    • 2006
  • This paper proposes a hybrid approach involving Genetic Algorithm (GA) and Bacterial Foraging (BF) for tuning the PID controller of an AVR. Recently the social foraging behavior of E. coli bacteria has been used to solve optimization problems. We first illustrate the proposed method using four test functions and the performance of the algorithm is studied with an emphasis on mutation, crossover, variation of step sizes, chemotactic steps, and the life time of the bacteria. Further, the proposed algorithm is used for tuning the PID controller of an AVR. Simulation results are very encouraging and this approach provides us a novel hybrid model based on foraging behavior with a possible new connection between evolutionary forces in social foraging and distributed non-gradient optimization algorithm design for global optimization over noisy surfaces.

Hybrid Genetic Algorithm or Obstacle Location-Allocation Problem

  • Jynichi Taniguchi;Mitsuo Gen;Wang, Xiao-Dong;Takao Yokota
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.191-194
    • /
    • 2003
  • Location-allocation problem is known as one of the important problem faced in Industrial Engineering and Operations Research fielde. There are many variations on this problem for different applications, however, most of them consider no obstacle existing. Since the location-allocation problem with obstacles is very complex and with many infeasible solutions, no direct method is effective to solve it. In this paper we propose a hybrid Genetic Algorithm (hGA) method for solving this problem. The proposed hGA is based on Lagrangian relaxation method and Dijkstra's shortest path algorithm. To enhance the proposed hGA, a Fuzzy Logic Controller (FLC) approach is also adopted to auto-tune the GA parameters.

  • PDF

A Study on Optimal fuzzy Systems by Means of Hybrid Identification Algorithm (하이브리드 동정 알고리즘에 의한 최적 퍼지 시스템에 관한 연구)

  • 오성권
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.5
    • /
    • pp.555-565
    • /
    • 1999
  • The optimal identification algorithm of fuzzy systems is presented for rule-based fuzzy modeling of nonlinear complex systems. Nonlinear systems are expressed using the identification of structure such as input variables and fuzzy input subspaces, and parameters of a fuzzy model. In this paper, the rule-based fuzzy modeling implements system structure and parameter identification using the fuzzy inference methods and hybrid structure combined with two types of optimization theories for nonlinear systems. Two types of inference methods of a fuzzy model are the simplified inference and linear inference. The proposed hybrid optimal identification algorithm is carried out using both a genetic algorithm and the improved complex method. Here, a genetic algorithm is utilized for determining initial parameters of membership function of premise fuzzy rules, and the improved complex method which is a powerful auto-tuning algorithm is carried out to obtain fine parameters of membership function. Accordingly, in order to optimize fuzzy model, we use the optimal algorithm with a hybrid type for the identification of premise parameters and standard least square method for the identification of consequence parameters of a fuzzy model. Also, an aggregate performance index with weighting factor is proposed to achieve a balance between performance results of fuzzy model produced for the training and testing data. Two numerical examples are used to evaluate the performance of the proposed model.

  • PDF

Hybrid Resource Allocation Scheme in Secure Intelligent Reflecting Surface-Assisted IoT

  • Su, Yumeng;Gao, Hongyuan;Zhang, Shibo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.10
    • /
    • pp.3256-3274
    • /
    • 2022
  • With the rapid development of information and communications technology, the construction of efficient, reliable, and safe Internet of Things (IoT) is an inevitable trend in order to meet high-quality demands for the forthcoming 6G communications. In this paper, we study a secure intelligent reflecting surface (IRS)-assisted IoT system where malicious eavesdropper trying to sniff out the desired information from the transmission links between the IRS and legitimate IoT devices. We discuss the system overall performance and propose a hybrid resource allocation scheme for maximizing the secrecy capacity and secrecy energy efficiency. In order to achieve the trade-off between transmission reliability, communication security, and energy efficiency, we develop a quantum-inspired marine predator algorithm (QMPA) for realizing rational configuration of system resources and prevent from eavesdropping. Simulation results demonstrate the superiority of the QMPA over other strategies. It is also indicated that proper IRS deployment and power allocation are beneficial for the enhancement of system overall capacity.

A Novel Hybrid Algorithm Based on Word and Method Ranking for Password Security

  • Berker Tasoluk;Zuhal Tanrikulu
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.161-168
    • /
    • 2023
  • It is a common practice to use a password in order to restrict access to information, or in a general sense, to assets. Right selection of the password is necessary for protecting the assets more effectively. Password finding/cracking try outs are performed for deciding which level of protection do used or prospective passwords offer, and password cracking algorithms are generated. These algorithms are becoming more intelligent and succeed in finding more number of passwords in less tries and in a shorter duration. In this study, the performances of possible password finding algorithms are measured, and a hybrid algorithm based on the performances of different password cracking algorithms is generated, and it is demonstrated that the performance of the hybrid algorithm is superior to the base algorithms.

A Study on the Hybrid Fractal clustering Algorithm with SOFM vector Quantizer (신경망이 벡터양자화와 프랙탈 혼합시스템에 미치는 영향)

  • 김영정;박원우;김상희;임재권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.81-84
    • /
    • 2000
  • Fractal image compression can reduce the size of image data by contractive mapping of original image. The mapping is affine transformation to find the block(called range block) which is the most similar to the original image. Fractal is very efficient way to reduce the data size. However, it has high distortion rate and requires long encoding time. In this paper, we present the simulation result of fractal and VQ hybrid systems which use different clustering algorithms, normal and improved competitive learning SOFM. The simulation results showed that the VQ hybrid fractal using improved competitive learning SOFM has better distortion rate than the VQ hybrid fractal using normal SOFM.

  • PDF

An Expanded Robust Hybrid Control for Uncertain Robot Manipulators (불확실성을 포함한 로봇의 확장된 견실 하이브리드 제어)

  • Kim, Jae-Hong;Ha, In-Chul;Han, Myung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.980-984
    • /
    • 2001
  • When robot manipulatros as mathematically modeled. uncetainties may not be avoided. The uncertain factors come from imperfect knowledge of system parameters, payload change. friction, external disturbance and etc. In this work, we proposed a class of robust hybrid control of manipulatosrs. We propose a class of expanded robust hybrid control with the separated bound function and the simulation results are provided to show the effectiveness of the algorithm.

  • PDF

A Study on the Performance Improvement of Fuzzy Controller Using Genetic Algorithm and Evolution Programming (유전알고리즘과 진화프로그램을 이용한 퍼지제어기의 성능 향상에 관한 연구)

  • 이상부;임영도
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.58-64
    • /
    • 1997
  • FLC(Fuzzy Logic Controller) is stronger to the disturbance than a classical controller and its overshoot of the intialized value is excellent. In case an unknown process or the mathematical modeling of a complicated system is impossible, a fit control quantity can be acquired by the Fuzzy inference. But FLC can not converge correctly to the desirable value because the FLC's output value by the size of the quantization level of the Fuzzy variable always has a minor error. There are many ways to eliminate the minor error, but I will suggest GA-FLC and EP-FLC Hybrid controller which csombines FLC with GA(Genetic Algorithm) and EP(Evo1ution Programming). In this paper, the output characteristics of this Hybrid controller will be compared and analyzed with those of FLC, it will he showed that this Hybrid controller converge correctly to the desirable value without any error, and !he convergence speed performance of these two kinds of Hyhrid controller also will be compared.

  • PDF