A Biologically Inspired Intelligent PID Controller Tuning for AVR Systems

  • Kim Dong-Hwa (School of Electrical, Electronic, Control & Instrumentation Engineering, Hanbat National University) ;
  • Cho Jae-Hoon (School of Electrical & Computer Engineering, Chungbuk National University)
  • Published : 2006.10.01

Abstract

This paper proposes a hybrid approach involving Genetic Algorithm (GA) and Bacterial Foraging (BF) for tuning the PID controller of an AVR. Recently the social foraging behavior of E. coli bacteria has been used to solve optimization problems. We first illustrate the proposed method using four test functions and the performance of the algorithm is studied with an emphasis on mutation, crossover, variation of step sizes, chemotactic steps, and the life time of the bacteria. Further, the proposed algorithm is used for tuning the PID controller of an AVR. Simulation results are very encouraging and this approach provides us a novel hybrid model based on foraging behavior with a possible new connection between evolutionary forces in social foraging and distributed non-gradient optimization algorithm design for global optimization over noisy surfaces.

Keywords

References

  1. C.-L. Lin and H.-W. Su, 'Intelligent control theory in guidance and control system design: An overview,' Proc. of Natul. Sci., Counc. ROC(A), vol. 24, no. 1, pp. 15-30, 2000
  2. P. J. Fleming and R. C. Purshouse, 'Evolutionary algorithms in control system engineering: A survey,' Control Eng. Practice, vol. 10, pp. 1223-1241, 2002 https://doi.org/10.1016/S0967-0661(02)00081-3
  3. M. Dotoli, G. Maione, D. Naso, and E. B. Turchiano, 'Genetic identification of dynamical systems with static nonlinearities,' Proc. of IEEE SMCia/01, Mountain Workshop Soft Computing Industrial Applications, Blacksburg, VA, pp. 65-70, June 25-27, 2001
  4. G. J. Gray, D. J. Murray-Smith, Y. Li, K. C. Sharman, and T. Weinbrenner, 'Nonlinear model structure identification using genetic programming,' Contr. Eng. Practice, vol. 6, no. 11, pp. 1341-1352, 1998 https://doi.org/10.1016/S0967-0661(98)00087-2
  5. K. Kristinnson and G. A. Dumont, 'System identification and control using genetic algorithms,' IEEE Trans. System, Man, Cybern., vol. 22, pp. 1033-1046, Sept.-Oct. 1992 https://doi.org/10.1109/21.179842
  6. B. Maione, D. Naso, and B. Turchiano, 'GARA: A genetic algorithm with resolution adaptation for solving system identification problems,' Proc. of Eur. Control Conf., Porto, Portugal, pp. 3570-3575, Sept. 4-7, 2001
  7. C. M. Fonseca and P. J. Fleming, 'Multiobjective optimization and multiple constraint handling with evolutionary algorithms-Part I: A unified formulation', '-Part II: Application example,' IEEE Trans. System, Man, Cybern. A: Systems and Humans, vol. 28, no. 1, pp. 26-47, Jan. 1998 https://doi.org/10.1109/3468.650319
  8. Z. Michalewicz, Genetic Algorithms+Data Structures=Evolution Programs, Springer- Verlag, New York, 1999
  9. J. Arabas, Z. Michalewicz, and J. Mulawka, 'GAVaPS-A genetic algorithm with varying population size,' Proc. of IEEE Int. Conf. on Evolutionary Computation, Orlando, pp. 73-78, 1994
  10. R. Tanese, 'Distributed genetic algorithm,' Proc. of Int. Conf. Genetic Algorithms, pp. 434-439, 1989
  11. R. J. Collins and D. R. Jefferson, 'Selection in massively parallel genetic algorithms,' Proc. of the Fourth Intl. Conf. on Genetic Algorithms, pp. 249-256, 1991
  12. S. Tsutsui and D. E. Goldberg, 'Simplex crossover and linkage identification: Singlestage evolution vs. multi-stage evolution,' Proc. of IEEE Int. Conf. Evolutionary Computation, pp. 974-979, 2002
  13. H. Yoshida, K. Kawata, and Y. Fukuyama, 'A particle swarm optimization for reactive power and voltage control considering voltage security assessment,' IEEE Trans. Power Syst., vol. 15, pp. 1232-1239, November 2000 https://doi.org/10.1109/59.898095
  14. J. Alcock, Animal Behavior: An Evolutionary Approach, Sinauer Associates, Sunderland, Massachusetts, 1998
  15. W. J. Bell, Searching Behavior: The Behavioral Ecology of Finding Resources, Chapman and Hall, London, England, 1991
  16. D. Grunbaum, 'Schooling as a strategy for taxis in a noisy environment,' Evolutionary Ecology, vol. 12, pp. 503-522, 1998 https://doi.org/10.1023/A:1006574607845
  17. C.-F. Juang, 'A hybrid of genetic algorithm and particle swarm optimization for recurrent network design,' IEEE Trans. on Systems, Man and Cybernetics, Part B, vol. 34, no. 2, pp. 997- 1006, April 2004 https://doi.org/10.1109/TSMCB.2003.818557
  18. K. M. Passino, Biomimicry of Bacterial Foraging for Distributed Optimization, University Press, Princeton, New Jersey, 2001
  19. K. M. Passino, 'Biomimicry of bacterial forag ing for distributed optimization and control,' IEEE Control Systems Magazine, vol. 22, no. 3, pp. 52-67, 2002 https://doi.org/10.1109/MCS.2002.1004010
  20. D. H. Kim, 'Intelligent PID controller tuning of AVR system using GA and PSO,' Proc. of IEEE Intelligent Computing, Lecture Notes in Computer Science Proceeding of Springer, Hefei, China, Aug. 23-26, 2005
  21. D. W. Stephens and J. R. Krebs, Foraging Theory, Princeton University Press, Princeton, New Jersey, 1986
  22. D. H. Kim and J. I. Park, 'Loss minimization control of induction motor using GA-PSO,' Lecture Notes in Computer Science Proceeding of Springer (KES 2005), Melbourne, Australia, Sep. 12-15, 2005
  23. D. H. Kim and J. I. Park, 'Intelligent tuning of PID controller for AVR system using a hybrid GA-PSO approach,' Lecture Notes in Computer Science Proceeding of Springer, Atlanta, May 12-15, 2005
  24. D. H. Kim and J. I. Park, 'Improvement of genetic algorithm using PSO and euclidean data distance,' Proc. of IEEE Intelligent Computing, Lecture Notes in Computer Science Proceeding of Springer, Aug. 23-26, China
  25. D. H. Kim and J. H. Cho, 'Intelligent control of AVR system using GA-BF,' Lecture Notes in Computer Science Proceeding of Springer Melbourne, Australia (KES 2005), June 12-15, 2005
  26. J.-O. Krah and J. Holtz, 'High performance current regulation and efficient PWM implementation for low-inductance servo motors,' IEEE Trans. Ind. App., vol. 35, pp. 1039-1049, Sep./Oct. 1999 https://doi.org/10.1109/28.793364
  27. D. H. Kim, 'Robust tuning of PID controllers with disturbance rejection using bacterial foraging based optimization,' WSEAS Trans. on Systems, vol. 3, no. 9, pp. 2834-2840, 2004
  28. D. H. Kim, 'Robust tuning of embedded intelligent PID controller for induction motor using bacterial foraging based optimization,' Lecture Notes in Computer Science Proceeding of Springer, ICESS2004, Zhejiang University, Hanzhou, China, Dec. 9-10, 2004
  29. D. H. Kim and J. H. Cho, 'Adaptive tuning of PID controller for multivariable system using bacterial foraging based optimization,' Lecture Notes in Computer Science Proceeding of Springer, Poland, June 12-15, 2005