• Title/Summary/Keyword: Hybrid Intelligent Algorithm

Search Result 190, Processing Time 0.035 seconds

Evaluating the bond strength of FRP in concrete samples using machine learning methods

  • Gao, Juncheng;Koopialipoor, Mohammadreza;Armaghani, Danial Jahed;Ghabussi, Aria;Baharom, Shahrizan;Morasaei, Armin;Shariati, Ali;Khorami, Majid;Zhou, Jian
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.403-418
    • /
    • 2020
  • In recent years, the use of Fiber Reinforced Polymers (FRPs) as one of the most common ways to increase the strength of concrete samples, has been introduced. Evaluation of the final strength of these specimens is performed with different experimental methods. In this research, due to the variety of models, the low accuracy and impact of different parameters, the use of new intelligence methods is considered. Therefore, using artificial intelligent-based models, a new solution for evaluating the bond strength of FRP is presented in this paper. 150 experimental samples were collected from previous studies, and then two new hybrid models of Imperialist Competitive Algorithm (ICA)-Artificial Neural Network (ANN) and Artificial Bee Colony (ABC)-ANN were developed. These models were evaluated using different performance indices and then, a comparison was made between the developed models. The results showed that the ICA-ANN model's ability to predict the bond strength of FRP is higher than the ABC-ANN model. Finally, to demonstrate the capabilities of this new model, a comparison was made between the five experimental models and the results were presented for all data. This comparison showed that the new model could offer better performance. It is concluded that the proposed hybrid models can be utilized in the field of this study as a suitable substitute for empirical models.

Energy Efficiency of Decoupled RF Energy Harvesting Networks in Various User Distribution Environments (다양한 사용자 분포 환경에서의 비결합 무선 에너지 하베스팅 네트워크의 에너지 효율)

  • Hwang, Yu Min;Sun, Young Ghyu;Shin, Yoan;Kim, Dong In;Kim, Jin Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.4
    • /
    • pp.159-167
    • /
    • 2018
  • In this paper, we propose an algorithm to optimize energy efficiency in a multi-user decoupled RF energy harvesting network and experiment on the trend of energy efficiency change assuming users' various geographical distribution scenarios. In the RF energy harvesting network where both wireless data transmission and RF energy harvesting are simultaneously performed, the energy efficiency is a key indicator of network performance, and it is necessary to investigate how various factors can affect the energy efficiency. In order to increase energy efficiency effectively, we can confirm that users' distributions are important factors in the RF energy harvesting network from the simulation results.

Face Recognitions Using Centroid Shift and Independent Basis Images (중심이동과 독립기저영상을 이용한 얼굴인식)

  • Cho Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.581-587
    • /
    • 2005
  • This paper presents a hybrid face recognition method of both the first moment of image and the independent component analysis(ICA) of fixed point(FP) algorithm based on Newton method. First moment is a method for finding centroid of image, which is applied to exclude the needless backgrounds in the face recognitions by shifting to the centroid of face image. FP-ICA is also applied to find a set of independent basis images for the faces, which is a set of statistically independent facial features. The proposed method has been applied to the problem for recognizing the 48 face images(12 persons o 4 scenes) of 64*64 pixels. The 3 distances such as city-block, Euclidean, negative angle are used as measures when match the probe images to the nearest gallery images. The experimental results show that the proposed method has a superior recognition performances(speed, rate) than conventional FP-ICA without preprocessing. The city-block has been relatively achieved more an accurate similarity than Euclidean or negative angle.

High Performance of Induction Motor Drive with HAI Controller (HAI 제어기에 의한 유도전동기 드라이브의 고성능 제어)

  • Nam, Su-Myeong;Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.4
    • /
    • pp.154-157
    • /
    • 2006
  • This paper is proposed hybrid artificial intelligent(HAI) controller for high performance of induction motor drive. The design..of this algorithm based on fuzzy-neural network(FNN) controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

Efficiency Optimization Control of IPMSM Drive using HIC (HIC를 이용한 IPMSM 드라이브의 효율 최적화 제어)

  • Baek, Jung-Woo;Ko, Jae-Sub;Choi, Jung-Sik;Kang, Sung-Joon;Jang, Mi-Geum;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.780_781
    • /
    • 2009
  • This paper proposes efficiency optimization control of IPMSM drive using hybrid intelligent controller(HIC). The design of the speed controller based on fuzzy-neural network that is implemented using fuzzy control and neural network. The design of the current based on adaptive fuzzy control using model reference and the estimation of the speed based on neural network using ANN controller. In order to maximize the efficiency in such applications, this paper proposes the optimal control method of the armature current. The optimal current can be decided according to the operating speed and the load conditions. This paper proposes speed control of IPMSM using ALM-FNN, current control of model reference adaptive fuzzy control(MTC) and estimation of speed using ANN controller. The proposed control algorithm is applied to IPMSM drive system controlled HIC, the operating characteristics controlled by efficiency optimization control are examined in detail.

  • PDF

Development of Hybrid Artificial Intelligent Controller for Induction Motor Drive (유도전동기 드라이브를 위한 하이브리드 인공지능 제어기의 개발)

  • Ko, Jae-Sub;Lee, Jung-Chul;Lee, Hong-Gyun;Nam, Su-Myeong;Choi, Jung-Sik;Park, Bung-Sang;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.188-190
    • /
    • 2005
  • This paper is proposed HAI controller for high performance of induction motor drive. The design of this algorithm based on FNN controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. The control performance of the HAI controller is evaluated by analysis for various operating conditions. The results of analysis prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

  • PDF

MalEXLNet:A semantic analysis and detection method of malware API sequence based on EXLNet model

  • Xuedong Mao;Yuntao Zhao;Yongxin Feng;Yutao Hu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.10
    • /
    • pp.3060-3083
    • /
    • 2024
  • With the continuous advancements in malicious code polymorphism and obfuscation techniques, the performance of traditional machine learning-based detection methods for malware variant detection has gradually declined. Additionally, conventional pre-trained models could adequately capture the contextual semantic information of malicious code and appropriately represent polysemous words. To enhance the efficiency of malware variant detection, this paper proposes the MalEXLNet intelligent semantic analysis and detection architecture for malware. This architecture leverages malware API call sequences and employs an improved pre-training model for semantic vector representation, effectively utilizing the semantic information of API call sequences. It constructs a hybrid deep learning model, CBAM+AttentionBiLSTM,CBAM+AttentionBiLSTM, for training and classification prediction. Furthermore, incorporating the KMeansSMOTE algorithm achieves balanced processing of small sample data, ensuring the model maintains robust performance in detecting malicious variants from rare malware families. Comparative experiments on generalized datasets, Ember and Catak, the results show that the proposed MalEXLNet architecture achieves excellent performance in malware classification and detection tasks, with accuracies of 98.85% and 94.46% in the two datasets, and macro-averaged and micro-averaged metrics exceeding 98% and 92%, respectively.

Evaluating Reverse Logistics Networks with Centralized Centers : Hybrid Genetic Algorithm Approach (집중형센터를 가진 역물류네트워크 평가 : 혼합형 유전알고리즘 접근법)

  • Yun, YoungSu
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.55-79
    • /
    • 2013
  • In this paper, we propose a hybrid genetic algorithm (HGA) approach to effectively solve the reverse logistics network with centralized centers (RLNCC). For the proposed HGA approach, genetic algorithm (GA) is used as a main algorithm. For implementing GA, a new bit-string representation scheme using 0 and 1 values is suggested, which can easily make initial population of GA. As genetic operators, the elitist strategy in enlarged sampling space developed by Gen and Chang (1997), a new two-point crossover operator, and a new random mutation operator are used for selection, crossover and mutation, respectively. For hybrid concept of GA, an iterative hill climbing method (IHCM) developed by Michalewicz (1994) is inserted into HGA search loop. The IHCM is one of local search techniques and precisely explores the space converged by GA search. The RLNCC is composed of collection centers, remanufacturing centers, redistribution centers, and secondary markets in reverse logistics networks. Of the centers and secondary markets, only one collection center, remanufacturing center, redistribution center, and secondary market should be opened in reverse logistics networks. Some assumptions are considered for effectively implementing the RLNCC The RLNCC is represented by a mixed integer programming (MIP) model using indexes, parameters and decision variables. The objective function of the MIP model is to minimize the total cost which is consisted of transportation cost, fixed cost, and handling cost. The transportation cost is obtained by transporting the returned products between each centers and secondary markets. The fixed cost is calculated by opening or closing decision at each center and secondary markets. That is, if there are three collection centers (the opening costs of collection center 1 2, and 3 are 10.5, 12.1, 8.9, respectively), and the collection center 1 is opened and the remainders are all closed, then the fixed cost is 10.5. The handling cost means the cost of treating the products returned from customers at each center and secondary markets which are opened at each RLNCC stage. The RLNCC is solved by the proposed HGA approach. In numerical experiment, the proposed HGA and a conventional competing approach is compared with each other using various measures of performance. For the conventional competing approach, the GA approach by Yun (2013) is used. The GA approach has not any local search technique such as the IHCM proposed the HGA approach. As measures of performance, CPU time, optimal solution, and optimal setting are used. Two types of the RLNCC with different numbers of customers, collection centers, remanufacturing centers, redistribution centers and secondary markets are presented for comparing the performances of the HGA and GA approaches. The MIP models using the two types of the RLNCC are programmed by Visual Basic Version 6.0, and the computer implementing environment is the IBM compatible PC with 3.06Ghz CPU speed and 1GB RAM on Windows XP. The parameters used in the HGA and GA approaches are that the total number of generations is 10,000, population size 20, crossover rate 0.5, mutation rate 0.1, and the search range for the IHCM is 2.0. Total 20 iterations are made for eliminating the randomness of the searches of the HGA and GA approaches. With performance comparisons, network representations by opening/closing decision, and convergence processes using two types of the RLNCCs, the experimental result shows that the HGA has significantly better performance in terms of the optimal solution than the GA, though the GA is slightly quicker than the HGA in terms of the CPU time. Finally, it has been proved that the proposed HGA approach is more efficient than conventional GA approach in two types of the RLNCC since the former has a GA search process as well as a local search process for additional search scheme, while the latter has a GA search process alone. For a future study, much more large-sized RLNCCs will be tested for robustness of our approach.

Disjointed Multipath Routing for Real-time Multimedia Data Transmission in Wireless Sensor Networks (무선 센서 네트워크 환경에서 실시간 멀티미디어 데이터 전송을 위한 비-중첩 다중 경로 라우팅)

  • Jo, Mi-Rim;Seong, Dong-Ook;Park, Jun-Ho;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.12
    • /
    • pp.78-87
    • /
    • 2011
  • A variety of intelligent application using the sensor network system is being studied. In general, the sensor network consists of nodes which equipped with a variety of sensing module and is utilized to collect environment information. Recently, the demands of multimedia data are increasing due to the demands of more detailed environmental monitoring or high-quality data. In this paper, we overcome the limitations of low bandwidth in Zigbee-based sensor networks and propose a routing algorithm for real-time multimedia data transmission. In the previously proposed algorithm for multimedia data transmission occurs delay time of routing setup phase and has a low data transmission speed due to bandwidth limitations of Zigbee. In this paper, we propose the hybrid routing algorithm that consist of Zigbee and Bluetooth and solve the bandwidth problem of existing algorithm. We also propose the disjointed multipath setup algorithm based on competition that overcome delay time of routing setup phase in existing algorithm. To evaluate the superiority of the proposed algorithm, we compare it with the existing algorithm. Our experimental results show that the latency was reduced by approximately 78% and the communication speed is increased by approximately 6.9-fold.

Study on Water Stage Prediction Using Hybrid Model of Artificial Neural Network and Genetic Algorithm (인공신경망과 유전자알고리즘의 결합모형을 이용한 수위예측에 관한 연구)

  • Yeo, Woon-Ki;Seo, Young-Min;Lee, Seung-Yoon;Jee, Hong-Kee
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.8
    • /
    • pp.721-731
    • /
    • 2010
  • The rainfall-runoff relationship is very difficult to predict because it is complicate factor affected by many temporal and spatial parameters of the basin. In recent, models which is based on artificial intelligent such as neural network, genetic algorithm fuzzy etc., are frequently used to predict discharge while stochastic or deterministic or empirical models are used in the past. However, the discharge data which are generally used for prediction as training and validation set are often estimated from rating curve which has potential error in its estimation that makes a problem in reliability. Therefore, in this study, water stage is predicted from antecedent rainfall and water stage data for short term using three models of neural network which trained by error back propagation algorithm and optimized by genetic algorithm and training error back propagation after it is optimized by genetic algorithm respectively. As the result, the model optimized by Genetic Algorithm gives the best forecasting ability which is not much decreased as the forecasting time increase. Moreover, the models using stage data only as the input data give better results than the models using precipitation data with stage data.