
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 10, Oct. 2024 3060
Copyright ⓒ 2024 KSII

http://doi.org/10.3837/tiis.2024.10.012 ISSN : 1976-7277

MalEXLNet:A semantic analysis and
detection method of malware API
sequence based on EXLNet model

Xuedong Mao1, Yuntao Zhao1*, Yongxin Feng2, and Yutao Hu1

1 School of information science and engineering, Shenyang Ligong University
6 Nanping Middle Road, Hunnan District, Shenyang, Liaoning Province, 110159, China

[e-mail: maoxuedong2024@163.com, zhaoyuntao_2014@163.com, huyutao_2023@163.com]
2 Graduate School, Shenyang Ligong University

6 Nanping Middle Road, Hunnan District, Shenyang, Liaoning Province, 110159, China
[e-mail: fengyongxin@263.net]

*Corresponding author: Yuntao Zhao

Received July 10, 2024; revised August 10, 2024; revised August 23, 2024;
accepted August 31, 2024; published October 31, 2024

Abstract

With the continuous advancements in malicious code polymorphism and obfuscation
techniques, the performance of traditional machine learning-based detection methods for
malware variant detection has gradually declined. Additionally, conventional pre-trained
models could adequately capture the contextual semantic information of malicious code and
appropriately represent polysemous words. To enhance the efficiency of malware variant
detection, this paper proposes the MalEXLNet intelligent semantic analysis and detection
architecture for malware. This architecture leverages malware API call sequences and employs
an improved pre-training model for semantic vector representation, effectively utilizing the
semantic information of API call sequences. It constructs a hybrid deep learning model,
CBAM+AttentionBiLSTM, for training and classification prediction. Furthermore,
incorporating the KMeansSMOTE algorithm achieves balanced processing of small sample
data, ensuring the model maintains robust performance in detecting malicious variants from
rare malware families. Comparative experiments on generalized datasets, Ember and Catak,
the results show that the proposed MalEXLNet architecture achieves excellent performance in
malware classification and detection tasks, with accuracies of 98.85% and 94.46% in the two
datasets, and macro-averaged and micro-averaged metrics exceeding 98% and 92%,
respectively.

Keywords: Cyberspace security, Malware variant detection, XLNet, CBAM,
AttentionBiLSTM

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 10, October 2024 3061

1. Introduction

The threat of malware has existed since the inception of computers. As security analysts and
researchers continually improve defences, malware developers persist in innovating,
discovering new infection vectors and enhancing their obfuscation techniques. Malware
threats have continued to expand both vertically (i.e., in number and size) and horizontally
(i.e., in type and function) due to the opportunities presented by technological advancements.
The Internet, social networks, smartphones, IoT devices, and other technologies have
facilitated the creation of intelligent and sophisticated malware [1]. According to statistics,
thousands of new malware variants are developed and spread daily in cyberspace. Most of
these malware variants are derived from mutations of known malware, such as new malware
created from old versions through variations and polymorphisms. These new versions can alter
their structure and functionality flow to evade antivirus software detection [2].

According to the AV-Test Institute, as of June 2024, a total of 883,810,844 Windows
malware and 189,779,307 Windows PUAs have been discovered, representing increases of
44,439,528 and 661,824, respectively, compared to the previous year [3]. The Cyber Threat
Report published by SonicWall indicates that SonicWall Capture Labs threat researchers
recorded 6.06 billion malware attacks in 2023, an 11% year-over-year increase, marking the
highest number of attacks since 2019 [4]. Data from the Kaspersky Security Bulletin 2023
shows that during the reporting period from November 2022 through October 2023,
437,414,681 malware attacks were thwarted from global online sources; financial malware
was prevented from launching on 325,225 users' computers; more than 23,364 revised
ransomware variants were discovered, along with 43 new ransomware families [5]. Therefore,
there is a pressing need to design an effective automatic detection method against malware
attacks.

There are two main approaches to malware detection. One is the static signature-based
method, where the static characteristics of malware are stored in a database, and a file’s unique
signature is compared against this database to determine if it is malware. While this method is
the most common and convenient, it cannot recognise unknown malware, as only known
variants are stored [6]. The other approach is behaviour-based detection, which examines a
file’s behaviour and characteristics to identify whether it is malware. If confirmed, this method
also classifies the malware family. Though more complex, behaviour-based detection yields
better results for detecting and classifying unknown malware [1].

Since malware variants are updated and iterated at an increasing rate, identifying unlogged
malware has become a top priority in malware detection. Although variant malware may
exhibit different code sequences in various environments, it must maintain consistent
behaviour across all environments. Since malware is designed to perform specific malicious
activities, most detection and classification methods focus on behavioural characteristics
rather than structural features. These methods use data such as Windows API calls, DNS
parsing, and registry operations to reflect malware behaviour [7]. API calls are widely used
for dynamic behavior-based analysis [8]. Sequences of API calls are considered representative
of understanding malware's behavioral characteristics [9].

The development of artificial intelligence technology has simplified life by providing
efficient solutions in different fields, including cybersecurity [10]. Malware variant detection
using API call sequences can be achieved through machine learning and deep learning.
However, machine learning faces limitations, including delays introduced by feature
engineering and the need for extensive data preprocessing, which hinder real-time analysis.
Adding data engineering layers to manage the growing data volume exacerbates these delays.

3062 Xuedong Mao et al.: MalEXLNet:A semantic analysis and detection method of
malware API sequence based on EXLNet model

As a result, deep learning has been employed for malware detection, offering automated
feature engineering, the ability to handle large datasets, extract features from limited data
samples, and support one-shot learning [11].

However, existing deep learning-based research has limitations. Models like CNNs, RNNs,
LSTMs, and BiLSTMs have been widely used in recent years to acquire sequence features and
identify malicious behaviours automatically. Recent studies [12][13] found that these models
can be spoofed through wrapping and black-box attack techniques. Two main issues contribute
to this: first, simply mapping APIs to numeric values overlooks the inherent semantic features
of functions; second, these models need to capture sequential features effectively. Additionally,
they need help with large datasets containing numerous API types, extensive feature sets, and
long sequences, which degrades performance.

The API call sequence of a program serves as context representing the program, and
malware from the same family generally exhibits similar behaviour. Thus, the contextual
semantic relationships of API call sequences are often alike [14]. The sequence context and
implicit function semantics are crucial in API call sequence categorization. API function
names imply various semantics, such as read, write, search, and download operations and
related resources like system permissions, networks, registries, and graphical user interfaces.
Encoding API call sequences with one-hot vectors produces high-dimensional vectors and
leads to the loss of critical semantic information [15]. Techniques from natural language
processing, such as text sequence processing [16] and word embedding [17], aid in
dimensionality reduction and semantic representation.

Existing studies often use traditional word embedding methods, such as Word2vec, to map
API sequences to high-dimensional word vectors [18]. Transformer-based pre-training models
have shown superior performance over traditional models in analyzing the semantics of
malware API call sequences. However, these models must fully exploit the semantic
information in API call sequences [19]. To address this, we propose the MalEXLNet
architecture focused on semantic analysis for malware detection.

The main contributions of this paper are as follows:1) A MalEXLNet model for malware
detection oriented towards semantic analysis is introduced. This model is designed to leverage
malware semantic information and sequence characteristics. Compared to traditional models,
MalEXLNet more effectively captures behavioural characteristics across global API call
sequences using the XLNet-based substitution language model;2) Due to differences between
API call sequences and the pre-trained model corpus, directly using large language models is
less effective for extracting semantic relationships. This paper proposes replacing XLNet's
word splitter with an embedding layer, transforming API sequences into word vectors, which
are then processed by XLNet's stacked Transformer-XL architecture for better semantic
extraction, producing a feature vector matrix rich in malware behaviour information; 3) To
address malware evasion techniques such as polymorphism and obfuscation, this paper
proposes an ensemble model integrating CBAM and AttentionBiLSTM. CBAM extracts local
features, while BiLSTM focuses on global patterns. An adaptive attention mechanism
highlights critical features, and the final output is classified into malware families using
Softmax.

The rest of the paper is organized: Section 2 reviews related work on malware variant
detection. Section 3 proposes the MalEXLNet model for semantic-based malware variant
detection and details its implementation. Section 4 compares the model's performance with
baseline models, evaluating it based on word vectors and the hybrid deep learning approach.
Section 5 presents the conclusions.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 10, October 2024 3063

2. Related Works

Currently, most malware API classification research employs language or deep learning
models. Deep learning models directly vectorize API function sequences and output
classification results after training. Alternatively, language models map API call sequences to
high-dimensional vectors using the extracted semantic information for malware classification.

This section introduces related research on using language models for semantic
vectorization and feature extraction of API call sequences, including the techniques used and
their advantages and disadvantages, as shown in Table 1.

Table 1. Advances in Semantic Analysis of API Sequences

Author Critical
Technologies

Benefit Shortcoming

Zhang et al

The model based
on API-Sequence-
Semantic Fusion
(Mal-ASSF) [15]

Mal-ASSF outperforms
existing solutions by 3% to 5%

in detection accuracy.

Further studies can be
conducted to obtain a better
representation of semantic
features using pre-trained

models.

Zhang et al
Skip-

Gram+CNNs-
BiGRU [20]

Reaching an accuracy of
0.9828 and an F1-Score of

0.9827.

Encoding API names
manually suffers from a lack

of flexibility.

Zhao et al

Semantic
chain+Gated

CNN+Bi-
LSTM+Attention

[21]

Obtain semantic chains by
deconstructing the API and

employing the parameters of
the API to augment the
semantic information

Does not fundamentally
address the problem of

concept drift.

Maniriho et
al

Embedding+CNNs
+BiGRU [22]

It achieved an F1-score of 0.99
on the training set and 0.98 on

the unseen data.

Embedding cannot understand
contextual semantic

information.
Aggarwal

et al
RF+(ELMo+Word
2Vec+BERT) [23]

It achieved an accuracy
between 0.91 and 0.93.

Experimental data set too
small.

Γιαπαντζής XLCNN [24] Semantic feature extraction
using improved XLNet model

Experimental data set too
small.

Liu et al BERT+CNN-
LSTM [18]

It achieved an accuracy of
98.81%.

Experimental data set too
small.

Based on the contributions of the researchers above, the use of semantic information in

existing studies on malware API call sequences is inadequate. Most studies still employ
traditional methods, such as embedding, which must fully leverage these sequences' contextual
information. Additionally, models that achieve better results are often applied to smaller
datasets, which can lead to overfitting. This paper proposes a method that improves pre-
training models specifically for malware API sequences and integrates them with a hybrid
deep-learning model. This approach effectively addresses these issues and is validated on large
datasets to ensure fair and reliable experimentation.

3. Methodology

This chapter presents the construction of the MalEXLNet architecture for the intelligent
detection of malware variants based on semantic analysis, as proposed in this paper.

3064 Xuedong Mao et al.: MalEXLNet:A semantic analysis and detection method of
malware API sequence based on EXLNet model

3.1 System overview
In this section, we introduce MalEXLNet, an intelligent architecture for malware semantic

analysis and detection. This method is based on malware API sequences and utilizes an
enhanced EXLNet model for semantic feature extraction and vectorized representation. The
extracted semantic feature matrix is input to a hybrid deep learning model,
CBAM+AttentionBiLSTM. Features captured by CBAM’s localized feature extraction and
AttentionBiLSTM’s global long-term dependency capture are passed to a fully connected
layer. The Softmax function classifies each API function call sequence into distinct malware
families. The design of this method is illustrated in Fig. 1.

Fig. 1. MalEXLNet architecture

3.2 Generating API calls dataset
This section presents the construction of the Windows malware datasets Ember [25] and

Catak [7], which are derived from dynamic and static analysis, respectively. The static
Windows malware API dataset is constructed by analyzing only the PE file of the malware. In
contrast, the dynamic Windows malware dataset requires analyzing the malware by executing
it in a virtual sandbox. The detailed process of constructing these malware datasets is

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 10, October 2024 3065

illustrated in Fig. 2.
The static malware API dataset is generated based on the EMBER dataset. The EMBER

dataset comprises millions of PE files representing various malware families and their variants.
Each analyzed file in the EMBER dataset is stored in JSON format, where each entry
corresponds to an analysis report of either benign or malicious malware. Each report includes
a unique identifier (the SHA-256 hash and MD5 code of the original file), coarse time
information (monthly resolution indicating when the file was first observed), a label (0 for
benign, 1 for malicious, and -1 for untagged), and eight sets of raw characteristics, including
histograms of parsed values, format-independent histograms, file properties, and import and
export functions. The dataset is cleaned and anonymized to ensure it does not pose a security
risk; the import functions contain API call sequences representing malware behaviour. The
dataset is constructed by screening for malware in the EMBER dataset with tags other than 0,
extracting their MD5 codes, and analyzing them using the VirusTotal online tool to determine
each malware's family name. The tags are then reconstructed, and the API call sequences from
the import table in each malware's analysis report are extracted to represent the malware's
behavioural characteristics. The final dataset includes each malware's family label and its
corresponding API function call sequence. The primary information of the EMBER dataset
used in this study is summarized in Table 2.

Fig. 2. Malware dataset construction process

Table 2. Main information of the EMBER dataset

Family Number Function Label

Ramint 386 Multiple ways to spread, steal sensitive data, and remotely control
infected devices.

0

Lethic 382 Sending large amounts of spam through infected computing devices
with botnet characteristics that allow attackers to remotely control

infected devices for illegal activities.

1

Emotet 527 Capable of stealing sensitive information, spreading other malware,
and conducting large-scale attacks via botnets.

2

Sality 1413 Capable of spreading through infected executables and network
shares, with the ability to steal sensitive information, download and

execute other malware, and remotely control through the botnets
they form.

3

Ursnif 241 Trojans that are mainly used to steal banking credentials, login
information and other sensitive data, with features such as

keylogging, screen capture and browser injection, and are often
spread through spam and phishing attacks.

4

Total 2949

3066 Xuedong Mao et al.: MalEXLNet:A semantic analysis and detection method of
malware API sequence based on EXLNet model

The dynamic malware API dataset is created based on the Catak dataset. As illustrated in
Fig. 2, this dataset must be produced within a virtual environment to avoid affecting the host
computer. First, install the Ubuntu operating system and set up the Cuckoo Sandbox
environment. Execute the malware within the Cuckoo Sandbox and write the resulting files
into MongoDB. Analyze these files to generate the malware Windows API dataset. Table 3
presents critical information about the dynamic malware Windows API dataset constructed
from the Catak dataset.

Table 3. Main information of the Catak dataset

Family Number Function Label

Spyware 832 A type of malware that monitors and records user activity to
steal personal information and sensitive data. 0

Virus 1001
Malware that spreads by infecting and modifying legitimate

files typically disrupts system functionality or steals
information.

1

Backdoor 1001 Malware that creates secret access routes in infected systems,
enabling attackers to remotely control the system. 2

Downloader 1001 Programs used to download and execute other malware from
the Internet are usually the first step in the attack chain. 3

Trojan 1001
Malicious programs that masquerade as legitimate software and

are used to perform unauthorized operations, such as stealing
data or controlling systems.

4

Adware 379 Malware that generates revenue by displaying ads or redirecting
browsers typically impacts the user experience. 5

Worms 1001
Malware that replicates and spreads itself without user

intervention and is commonly used for rapid proliferation and
cyber attacks.

6

Dropper 891 Programs used to stealthily install and unleash other malware
on infected systems usually avoid detection. 7

Total 7107

3.3 Dataset equilibrium
Producing a balanced dataset is challenging because the number of malware samples from

different families varies significantly, leading to an imbalanced dataset. Table 1 and 2 show
that this imbalance can adversely affect the model's classification performance. Specifically,
the model may become biased toward the larger sample groups, while its accuracy diminishes
for smaller groups. This imbalance can result in lower prediction accuracy for less-represented
malware families.

Data equalization algorithms balance the dataset to address these issues, ensuring that each
category has approximately equal samples. After reviewing extensive literature and building
on previous work [26][27][28], we initially selected the KMeansSMOTE, ADASYN, and
Smote-EnN algorithms as potential methods. After comparing their performance on the dataset,
as shown in Fig. 3, we decided to use KMeansSMOTE, ADASYN, and Smote-EnN for data
equalization in this study.

The KMeansSMOTE algorithm effectively captures the distribution information of the
original samples by partitioning the sample space into clusters and generating new samples
within each cluster. This approach creates more representative synthetic samples and reduces
overfitting to the overall sample distribution. Additionally, the algorithm accounts for the local

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 10, October 2024 3067

characteristics of each cluster, resulting in synthetic samples that are more similar to the
original samples and minimizing noise. Finally, the algorithm handles nonlinear data
structures well, offering improved oversampling results. The equalization results of the
KMeansSMOTE, ADASYN, and Smote-EnN algorithms on the EMBER and Catak datasets
are presented in Fig. 3 and 4.

3.4 API calls sequence feature-vectorized representation
Maniriho et al. [22] noted that similarities in API function call sequences differ significantly

from those in ordinary English words or texts, leading to suboptimal results when using pre-
trained language models directly. Consequently, they employed direct embedding to encode
API function call sequences, enabling the automatic generation of dense embedding vectors.
However, this vectorized representation fails to capture semantic relationships, making it
challenging for the model to recognize shared behavioral patterns within the same family.

Fig. 3. Comparison of the effectiveness of equalization algorithms on the EMBER dataset

Fig. 4. Comparison of the effectiveness of equalization algorithms on the Catak dataset

Liu et al. [18] propose using the BERT pre-training model to vectorize the semantic features

of API call sequences but do not address the inconsistency between API sequences and the
pre-training corpus. Despite BERT's robust performance, the authors of XLNet [29]
demonstrate that XLNet often surpasses BERT in various tasks and addresses some of its
shortcomings. Therefore, this paper proposes a more suitable vectorization method for
representing API function call sequence features: the Embedding+XLNet model architecture.

3.4.1 Embedding
After the dataset is prepared, the API function call sequences must be transformed into a

format from which the model can learn; this process is known as word embedding. The word
embedding method proposed in this paper begins by using keras_Embedding to encode the
API function call sequences and generate word vectors. Specifically, Embedding first
constructs a collection of all API function call sequences in the dataset. Each sequence within
this collection is then subjected to sequential integer encoding, where similar sequences are

3068 Xuedong Mao et al.: MalEXLNet:A semantic analysis and detection method of
malware API sequence based on EXLNet model

mapped to similar integers, forming a dictionary. The result is an integer-encoded
representation of each API function call sequence.

Meanwhile, the Keras embedding layer uses a deep neural network to generate dense vector
representations of API function call sequences. It maps encoded API calls in the input
sequence to dense vectors in a high-dimensional space, ensuring that similar API calls are
positioned closer together. Specifically, the Keras embedding layer processes an input matrix
of integer-encoded API function call sequences, where each row represents the sequence of
API calls for a particular malware family. Each integer encoding is mapped to a fixed-length
dense vector, learned through neural network training. The final output is a dense vector matrix
representing the API function call sequences.

Critical parameters of the Keras embedding layer include the vocabulary size of the dataset's
API sequences and determining the number of unique sequences. The dimensionality of the
embedding vector determines the length of each dense vector mapped from input words. The
input sequence length (input_length) parameter, typically set based on the maximum sequence
length in the dataset, guides Keras in creating an appropriately sized embedding matrix. For
parameter selection in the Keras embedding layer, the dataset's API sequence length
distribution is first analyzed (Fig. 5). Most sequences fall below 250 in length, so input_length
is set to 250. After defining input_length, determining the embedding vector dimension
(output_dim) involves clustering the dense vectors output by the embedding layer. Visual
clustering analysis, employing methods like KMeans [30] and t-SNE [31] for dimensionality
reduction, assists in choosing an appropriate output_dim. t-SNE, known for preserving data
point distances across high-dimensional to low-dimensional spaces, uses Gaussian distribution
to measure similarity and achieve effective data visualization through relative entropy
minimization between spaces.

In the context of the KMeans algorithm, 2
ji xx − represents the squared Euclidean distance,

and iσ denotes the distance between data point i. The associated variance iy refers to point i
in the lower-dimensional space.K-means, a standard clustering algorithm, is a method of
initially partitioning data into K clusters. Each data point is allocated to the cluster centre that
is the nearest distance away. Subsequently, the algorithm computes the mean of all data points
within each cluster, thereby updating the cluster centres. These steps are iterated until either
the cluster centers converge or a predefined number of iterations is reached. The objective of
K-Means is to minimise the within-cluster sum-of-squares error, which is a measure of the
sum of distances from each point in a cluster to its centre.

Fig. 5. Statistical plot of length distribution of API sequences

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 10, October 2024 3069

 (1)

 (2)

 (3)

Using the t-SNE and KMeans algorithms to visually cluster the word vectors generated by

embedding, as shown in Fig. 6, we observe that clustering performance is optimal when
output_dim is set to 50, maximizing feature extraction effectiveness.

Fig. 6. Effect of output_dim clustering in different dimensions

We introduce the contour coefficient index to verify that the clustering effect is optimal

when output_dim = 50. This index assesses the clarity of contours within each category after
clustering. Its value ranges from -1 to 1, with higher values indicating better clustering
effectiveness. The formula for calculating this coefficient is as follows:

 (4)

In this context, a(i) represents the mean distance between the ith element x(i) and all other
elements within the same cluster, indicating the degree of cohesion within the cluster. b(i)
denotes the nearest mean distance between x(i) and elements of all other clusters, quantifying
the dispersion between clusters. The silhouette coefficient is illustrated in Fig. 7.

3070 Xuedong Mao et al.: MalEXLNet:A semantic analysis and detection method of
malware API sequence based on EXLNet model

Fig. 7. Output _ dim contour coefficients of different dimensions

3.4.2 EXLNet model method
The XLNet model uses the SentencePiece segmentation method [32]. While SentencePiece

effectively handles morphemes and unregistered words in regular text, API function call
sequences often include many unique function names and identifiers, making subword
segmentation less suitable. In contrast, embedding methods better preserve the integrity of
function names and identifiers in API function call sequences. Additionally, embeddings allow
for more flexible customization of sequence processing based on the specific characteristics
of these sequences.

The word vectors obtained using only the Embedding model lack semantic relationships in
the malware API call sequences. Therefore, the output of the Embedding layer is further
processed with the pre-trained XLNet model to extract contextual semantic features from the
API function call sequences, enriching the model's learnable features.

The XLNet model combines the strengths of autoregressive and autoencoding language
models by introducing the bidirectional context modeling of autoencoding models into the
autoregressive framework. This approach resolves the inconsistency between training and
fine-tuning phases typically found in bidirectional autoencoding models due to [Mask].
Additionally, XLNet uses the Transformer-XL architecture to address the limitation of fixed-
length input sequences in standard Transformer models [33]. Transformer-XL’s extended
contextual memory is particularly beneficial for handling long sequential tasks, allowing
XLNet to excel in tasks requiring long-term dependency modeling.

The Two-stream in XLNet represents Two groups of information streams, called content
stream and query stream, which are two hidden states, namely, the content hidden state

)(tXh z <θ is abbreviated as
tzh , and the query hidden state),(tz ztXg <θ is abbreviated as

tzg .

The query hidden state 0
ig is initialized as a variable w, and the content hidden state is

initialized as)(0
ti xeh = , where)(txe is the initial word vector.

Let m be the number of layers, and compute the query hidden state for each layer:
 (5)

Content hidden state:
 (6)

In this way, the Query Stream can be used to predict the location without leaking the current
location's content information, and the purpose of the autoregressive language model is
achieved.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 10, October 2024 3071

The Attention Score of qi and ki for the same Segment in a standard Transformer can be
decomposed as follows.
 (7)

Based on the above formula, the Transformer-XL model proposes a calculation formula for
relative position encoding Attention:
 (8)

The above two formulas contain four subformulas, numbered Formula A, Formula B,
Formula C, and Formula D. Compared with Formula abs

jiA , , the relative position code jiR − in

Formula rel
jiA , replaces the absolute position code jU in Formula B and Formula D, and the

trainable dRu∈ and dRv∈ are used to replace T
q

T
i WU in Formula C and Formula D,

respectively.
Then, the key is split into EkW , and RkW , to represent the content and location-related keys.

In Equation rel
jiA , , equation a represents the content calculation, which is the Embedding of ix

times the inner product of the Embedding of transformation matrices qW and ix times EkW , .
Equation B represents the content-based position bias, the vector of i multiplied by the relative
position encoding. C formula represents global content bias; Equation D represents the global
position bias.

Then, the hidden state and relative position encoding obtained from the previous calculation
are input into Transformer-XL, where they are used for computation. Transformer-XL
enhances Transformer by adding a memory mechanism that saves previous hidden states for
use in subsequent computations. Each Encoder in Transformer-XL includes a memory to store
these states. When a new position is computed, the previous state is retrieved from memory
and combined with the current input. The updated output is then stored in memory, extending
the sequence length. The formula for vector concatenation is as follows:
 (9)

The formula shows that the current input is memory)(1−nmτ and the hidden state 1−nhτ at the
previous moment. SG() means not participating in the gradient calculation, o means vector
splicing, τ means the segment, and n means the number of layers.

Calculate the Query, Key, and Value:
 (10)

In the formula, the query can only be calculated with the hidden state 1−nhτ at the last time,
and the Key and value are calculated with the 1−nHτ in Equation 6. Because the Key is
decomposed into EkW , and RkW , , only the EkW , representing the content is used in the
calculation here.

The Attention score is calculated from Arel:
 (11)

Since E and W have been calculated to q, k and v in Eq. 6, they can be directly substituted
here.

Convert the Attention scores into probabilities:
 (12)

The Softmax function converts the attention score into a number between 0 and 1; that is,

3072 Xuedong Mao et al.: MalEXLNet:A semantic analysis and detection method of
malware API sequence based on EXLNet model

the attention score is converted into a probability.Residual join and layer normalization:
 (13)

Residual chaining enables the model to preserve information from the original input as it
passes through, facilitating more efficient gradient propagation in deep networks. This
capability allows for training deeper models without encountering vanishing or exploding
gradients. Layer normalization standardizes features in each Transformer's self-attention
mechanism and feedforward neural network. It helps reduce internal covariate shifts during
training, thus stabilizing the training process. Layer normalization is often used with residual
chaining to enhance the model's expressive power and training effectiveness.

Fully connected:
 (14)

Fully connected layers in each Transformer block help build deeper networks that more
effectively capture features and dependencies in API sequences. After being processed by an
XLNet model, the output feature matrix contains the contextual semantic relationships of the
API sequences, providing richer features for the model to learn.

The Two-stream in XLNet represents Two groups of information streams, called content
stream and query stream, which are two hidden states, namely, the content hidden state

)(tXh z <θ is abbreviated as
tzh , and the query hidden state),(tz ztXg <

θ
is abbreviated as

tzg . The query hidden state 0
ig is initiated as a variable w, while the content hidden state is

initiated as)(0
ti xeh = . The initial word vector is represented by)(txe .

The comparison of the relationship between using the embedding method, XLNet method,
and the proposed method and the results after performing word vector transformation is shown
in Fig. 8.

Fig. 8. Relationship between several word vector transformation methods and transformation result

graph

3.5 Feature extraction for Hybrid deep learning models
We devised a hybrid deep learning model for automatic feature extraction to enhance the

extraction of local semantic information from API sequences. This model integrates CBAM
and AttentionBiLSTM, leveraging their strengths to effectively capture features from malware
API call sequences and classify malware families.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 10, October 2024 3073

3.5.1 CNN
Convolutional Neural Networks (CNNs) are prominent models in deep learning, typically

comprising five layers: the input layer, convolutional layer, ReLU activation layer, pooling
layer, and fully connected layer. One-dimensional convolution, a fundamental operation in
CNNs, extracts local semantic information by sliding a small kernel (or filter) across the input
feature matrix of API call sequences. This operation performs element-wise multiplication and
summation to produce a new feature map at each position.

In our model, a one-dimensional CNN layer employs 64 convolutional kernels, each of
width 3. ReLU activation is applied, and padding is used to handle boundary issues. Each
convolutional layer is followed by a max pooling layer to reduce dimensionality and enhance
feature extraction efficiency. This approach enables the model to capture local semantic
features from API sequences better, facilitating more accurate classification and prediction in
subsequent layers.

3.5.2 Convolutional Block Attention Mechanism CBAM
The Convolutional Block Attention Module (CBAM) is a streamlined enhancement for

CNN. CBAM integrates spatial and channel attention mechanisms independently, sequentially
inferring attention maps from intermediate feature maps. This process enhances feature
optimization by multiplying the attention map with the input feature map. When applied to the
analysis of malware API call sequences, CBAM effectively highlights crucial semantic
information, significantly improving the accuracy of malware family classification. Refer to
Fig. 9 for the CBAM architecture diagram.

Fig. 9. Architecture diagram of CBAM

3.5.3 AttentionBiLSTM
After extracting local semantic features with CBAM, long-term dependencies are captured

from a global perspective to provide a more comprehensive understanding of the API
sequence's semantic information. This approach aims to capture bidirectional semantic
information from API sequences while addressing the vanishing gradient problem, enhancing
the model's ability to capture long-distance dependencies. The BiLSTM network consists of
two LSTM layers: one processes the sequence in the forward direction and the other processes
it in the reverse direction. Each LSTM layer includes a hidden state and a memory state. The
input sequence is fed into the forward and reverse LSTM layers at each time step to compute
hidden states in both directions. The structure of the LSTM is illustrated in Fig. 10.

3074 Xuedong Mao et al.: MalEXLNet:A semantic analysis and detection method of
malware API sequence based on EXLNet model

Fig. 10. LSTM structure

 (15)

 (16)
 (17)
 (18)
 (19)
 (20)

Where ft is the forgetting state vector, Wf is the weight of the forgetting gate, ht-1 is the
output vector state of the previous moment, xt is the input vector of the hidden state connected
to the input gate, bf is the bias term to adjust the opening degree of the forgetting gate, it is the
updated hidden state vector, tanh is the hyperbolic tangent function. ~

tc is the updated state
vector of the gating unit, ct is the state vector of the updated gating unit, ct is the state vector
of the output gate, and ht is the state of the output gate vector of the final result.

An adaptive attention mechanism layer is incorporated into the model after the BiLSTM
layer to enhance its ability to process the input sequence and identify critical information and
dependencies. This mechanism typically consists of one or more parameterized attention heads
with learnable weight parameters to compute attention scores for each time step in the input
sequence. Each attention head generates a context vector by applying weights to aggregate the
hidden states of the input sequence. The multi-head attention mechanism processes the input
sequence in parallel, with each head learning different aspects of attention and concatenating
its outputs.

The adaptive attention mechanism allows the model to assign weights to different parts of
the sequence at various time steps, enabling automatic learning and adjustment of these
weights. This capability helps capture critical information within the input sequence,
enhancing sequence modeling performance.

The structure of AttentionBiLSTM is shown in Fig. 11.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 10, October 2024 3075

Fig. 11. Structure diagram of AttentionBiLSTM

3.6 Model Structure
In the preceding sections, the principles of each module in the model and their roles in the

semantic analysis of malware API call sequences were described in detail. Initially, the
malware API call sequences in the dataset underwent preliminary word embedding using an
embedding method. The output from the embedding layer was then input into the XLNet
model to extract and further enrich semantic relationships and optimize features. The
embedding matrix, processed by both the embedding method and XLNet, was input to the
hybrid deep learning model. After local feature extraction by CBAM, the AttentionBiLSTM
captured long-term dependencies and highlighted key features. Finally, a softmax layer was
employed for malware detection and classification.

The specific malware semantic analysis and detection model structure is depicted in Fig. 12.

4. Experiments and results

This section details the experimental evaluation performed in the evaluation of the proposed
framework. A multi-classification problem has been generated based on a semantic analysis
of malware API call sequences in Windows systems.

4.1 Experimental Setup
The malware static detection model proposed in this paper was implemented and tested in

a Windows 10 (64-bit) computer with processor: 12th Gen Intel(R) Core(TM) i5-12490F 3.00
GHz, memory: capacity 16 GB, graphics card: NVIDIA GeForce RTX 4060 Ti 8GB; The
Keras deep learning framework, versions TensorFlow 2.0.0 and Keras2.3.1, is used and the
gradient descent optimization algorithm is Adam.

3076 Xuedong Mao et al.: MalEXLNet:A semantic analysis and detection method of
malware API sequence based on EXLNet model

Fig. 12. Malware semantic analysis and detection model structure

4.2 Experimental parameter Settings
Table 4 provides a detailed account of the specific parameters associated with the proposed

framework.

Table 4. Summary of parameter Settings for the proposed architecture
Layer Parameter Used Value

Embedding layer
Input sequence length

Embedding output dimension
Sequence padding

250
50

Zero padding

XLNet layer

Activation function
Number of Hidden Units

Dropout Probability
Number of Hidden Layers
Word Vector Dimension

GeLu
768
0.1
12

768

CBAM

Number of filters
Kernel size

Activation function
Number of pooling layer

Pooling method
Stride

64
3

ReLu
2

Max pooling and Avg pooling
1

AttentionBiLSTM Number of Hidden Units
Activation function

128
Tanh

Fully connected layer

Number of hidden layers
Number of neurons 1
Activation function

L2 Regularizer
Dropout Regularizer
Number of neurons 2
Activation function

2
128

ReLu
0.01
0.5
5

Softmax

Model compilation
Optimizer

Loss function
Adam with a learning rate of

1e-5
CategoricalCrossentropy

Others Number of epochs
Batch size

20/fold
16

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 10, October 2024 3077

4.3. Evaluation metrics
We used a suite of metrics commonly employed in classification problems to assess the

model's efficacy, including accuracy, F1 score, and loss value. We selected the cross-entropy
function as the model's loss function to quantify the discrepancy between the predicted and
actual label distributions. Additionally, macro- and micro-averaging indicators were included.

4.4 Experimental Results
This section presents the results of the performance of the proposed model for the

classification of malware API call sequences in the context of the detection task.
Fig. 13 illustrates the model's F1-score, accuracy, and loss values on the EMBER dataset.

The experiment uses a 10-fold cross-validation method, with each fold representing a subset
of the data. The results for each fold are shown as separate line plots. As depicted in the figure,
the F1-score increases significantly with additional training and stabilizes after four training
cycles. The model's training accuracy reaches 93% in the first cycle, with slight fluctuations
in the subsequent three cycles, but remains above 98%. In later cycles, the model's
performance stabilizes, with accuracy consistently around 98%. Initially, the model exhibits a
high loss value, which decreases steadily over time, stabilizing at approximately 0.02 after
four training cycles.

Fig. 13. MalEXLNet model test F1-score, Accuracy and Loss in EMBER

The experimental results of the model on the Catak dataset are presented in Fig. 14. The

figure shows that both the accuracy and F1-score of the model increase gradually during the
first round of training. From round 2 to round 4, the accuracy exhibits a slight decreasing trend,
after which the model's performance gradually stabilizes. Ultimately, the F1-score, accuracy,
and loss stabilize at approximately 97%, 98%, and 0.05, respectively.

Fig. 14. MalEXLNet model test F1-score, Accuracy and Loss in Catak

3078 Xuedong Mao et al.: MalEXLNet:A semantic analysis and detection method of
malware API sequence based on EXLNet model

4.5 Comparison with the baseline model
Table 5 and 6 present the macro- and micro-averaging metrics of the models on the EMBER

and Catak datasets, along with comparative data against other baseline models. To ensure
fairness, the parameters and experimental environments for the baseline models are kept
consistent with those reported in the original studies. All models are evaluated using the dataset
established in this paper. The macro- and micro-averaging metrics were also calculated for the
baseline models to enhance the experiments' persuasiveness. These additions did not affect the
models' performance.

The baseline models selected for comparison are as follows: Sahil et al. [23] used ELMo,
Word2Vec, and BERT for semantic feature extraction of API sequences, achieving high
accuracy of up to 93% on their dataset. Γιαπαντζής et al. [24] proposed an enhanced model
named XLCNN, which combines the size and structure of feedforward neural networks with
input dimensions to improve semantic analysis of malware and address malicious code
classification. Liu et al. [18] introduced SeMalBERT, a semantic-based malware intelligence
model that leverages the pre-trained BERT model to extract semantic relationships in API call
sequences. They also vectorize these sequences and construct a CNN-LSTM classification
model with an attention mechanism for malware classification and detection.

As illustrated in the preceding table, the proposed model achieves an accuracy of 98.85%
on the test set, with an F1 score of 98.76%. The loss is minimal at 0.02, and macro and micro
average indicators are above 98%. For comparison, other baseline models use deep learning
methods for feature extraction. Among these, Γιαπαντζής et al. proposed an innovative word
embedding processing method tailored to API sequence characteristics, achieving notable
results. Liu et al. employed a hybrid deep learning model combining CNN and LSTM for
feature extraction and classification, achieving better results than single deep learning models.

These two tables show that the model proposed in this paper achieves an accuracy of 98.85%
on the EMBER dataset, with an F1-score of 98.76% and a loss value of 0.3882. Both macro-
averaging and micro-averaging correlation indices exceed 98%. On the Catak dataset, the
model achieves an accuracy of 94.46%, a loss value of 0.3287, and an F1-score of 92.13%.
Other baseline models using deep learning methods for feature extraction also demonstrate
notable performance. For instance, Γιαπαντζής et al. approached the problem with word
vectors, proposing an innovative method tailored to API function call sequences, which
yielded significant results. Liu et al. employed a hybrid deep learning approach, combining
CNN and LSTM for feature extraction and classification, achieving superior results to single
deep learning models.

Table 5. Comparison of different baseline models in EMBER

study Acc F1 Loss macro micro
P R F1 P R F1

Sahil [23] 0.9512 0.9485 0.6263 0.9502 0.9498 0.9425 0.9498 0.9462 0.9418
Γιαπαντζή

ς[24] 0.9668 0.9635 0.5356 0.9638 0.9602 0.9597 0.9639 0.9613 0.9601

Liu[18] 0.9756 0.9704 0.4216 0.9712 0.9701 0.9609 0.9708 0.9716 0.9612
Proposed

Model 0.9885 0.9876 0.3822 0.9872 0.9862 0.9860 0.9841 0.9832 0.9827

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 10, October 2024 3079

Table 6. Comparison of different baseline models in Catak

study Acc F1 Loss macro micro
P R F1 P R F1

Sahil [23] 0.8613 0.8523 0.8763 0.8465 0.8458 0.8460 0.8596 0.8436 0.8519
Γιαπαντζή

ς[24] 0.8836 0.8759 0.7856 0.8657 0.8625 0.8653 0.8863 0.8769 0.8627

Liu[18] 0.9236 0.9216 0.5016 0.9136 0.9132 0.9135 0.9223 0.9165 0.9162
Proposed

Model 0.9446 0.9213 0.3287 0.9243 0.9210 0.9226 0.9446 0.9436 0.9448

4.6 Performance comparison of different word embedding models
We conduct comparative trials, including those with traditional and emerging pre-trained

language models, to show that our EXLNet model performs better in the semantic analysis of
malware API call sequences.

Table 7 and 8 present the detailed experimental results of the three-word vector models on
the EMBER and Catak datasets. The tables indicate that the XLNet model achieves the best
performance in terms of accuracy and loss. Furthermore, the model proposed in this paper also
attains superior results in both macro-averaging and micro-averaging evaluation metrics.

Table 7. Comparison results of different word vector models in EMBER

Model Average macro micro
Acc F1 Loss P R F1 P R F1

Embedding 0.7978 0.7937 0.8780 0.8593 0.7930 0.823
6 0.7976 0.7946 0.7954

XLNet 0.9379 0.9340 0.1700 0.9400 0.9363 0.938
0 0.9356 0.9368 0.9362

EXLNet 0.9620 0.9596 0.1092 0.9609 0.9603 0.960
6 0.9649 0.9627 0.9618

Table 8. Comparison results of different word vector models in Catak

Model Average macro micro
Acc F1 Loss P R F1 P R F1

Embedding 0.7978 0.7937 0.8780 0.8593 0.7930 0.8236 0.7976 0.7946 0.7954
XLNet 0.9379 0.9340 0.1700 0.9400 0.9363 0.9380 0.9356 0.9368 0.9362

EXLNet 0.9620 0.9596 0.1092 0.9609 0.9603 0.9606 0.9649 0.9627 0.9618

4.7 Ablation experiment
The experimental results in Table 9 and 10 demonstrate that our proposed model effectively

leverages the strengths of each sub-module—the absence of any sub-module results in a
noticeable degradation in the model's performance. For clarity, each model configuration is
designated as Models 1 through 7, as outlined in Table 9.

3080 Xuedong Mao et al.: MalEXLNet:A semantic analysis and detection method of
malware API sequence based on EXLNet model

Table 9. Results of ablation experiments in EMBER

Algorithm Acc F1 Loss macro micro
P R F1 P R F1

Dense 0.9580 0.9547 1.012 0.9589 0.9568 0.9578 0.9579 0.9567 0.9588
CNN 0.9623 0.9588 0.4320 0.9650 0.9623 0.9635 0.9612 0.9628 0.9635

CBAM 0.9713 0.9694 0.9627 0.9721 0.9705 0.9713 0.9704 0.9716 0.9728
BiLSTM 0.9810 0.9799 0.4712 0.9808 0.9803 0.9805 0.9806 0.9810 0.9808
Attention
BiLSTM 0.9826 0.9814 0.4718 0.9826 0.9819 0.9822 0.9821 0.9828 0.9816

CBAM+
BiLSTM 0.9829 0.9817 0.4722 0.9831 0.9823 0.9827 0.9828 0.9831 0.9823

CBAM+
Attention
BiLSTM

0.9885 0.9876 0.3822 0.9872 0.9862 0.9860 0.9841 0.9832 0.9827

In Model 1, the feature vectorization matrix derived from the semantic analysis of the

EXLNet model is directly input into the fully connected layer, which performs classification
and detection tasks. Model 2 extends Model 1 by incorporating a convolutional neural network
(CNN) to extract local features. Comparing the results of Model 2 with Model 1 highlights the
effectiveness of CNNs in local feature extraction. Model 3 builds on Model 2 by integrating
spatial and channel attention mechanisms through the CBAM module. Results show that
incorporating these attention mechanisms significantly enhances the model's feature extraction
capabilities, ensuring critical features receive more attention. Model 4 advances beyond Model
1 by adding a bidirectional LSTM (BiLSTM) layer to filter and retain historical information,
capture long-term dependencies, and improve the model's ability to learn semantic
relationships in malware API call sequences. Model 5 further improves Model 4 with an
adaptive attention mechanism, allowing the model to capture essential features better and
enhance its learning capability. Models 6 and 7 combine advanced text feature extraction
methods and achieve higher accuracy than the previous models.

Table 10. Results of ablation experiments in Catak

Algorithm Acc F1 Loss macro micro
P R F1 P R F1

Dense 0.8723 0.8698 1.582 0.8802 0.8765 0.8659 0.8712 0.8802 0.8698
CNN 0.9018 0.8965 1.2314 0.8996 0.8856 0.8849 0.8963 0.8954 0.9001

CBAM 0.9054 0.9038 0.9489 0.8979 0.8896 0.8893 0.8996 0.8941 0.9010
BiLSTM 0.9219 0.9220 0.6512 0.9208 0.9210 0.9118 0.9206 0.9118 0.9028
Attention
BiLSTM 0.9326 0.9310 0.4738 0.9302 0.9330 0.9298 0.9287 0.9222 0.9279

CBAM+
BiLSTM 0.9429 0.9412 0.4136 0.9298 0.9396 0.9829 0.9402 0.9425 0.9436

CBAM+
Attention
BiLSTM

0.9446 0.9213 0.3287 0.9243 0.9210 0.9226 0.9446 0.9436 0.9448

5. Conclusion and Outlook

This paper proposes an intelligent malware analysis and detection method based on
semantic analysis. This method leverages the improved pre-training model XLNet and the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 10, October 2024 3081

hybrid deep learning model CBAM+AttentionBiLSTM to accurately detect malware API call
sequences. We first extract API function call sequences of malware using static and dynamic
analysis techniques and construct a dataset by classifying the malware by family. Next, we
perform semantic feature vectorization of the API sequences in the dataset using the word
vector model XLNet and input the resulting feature vectors into the
CBAM+AttentionBiLSTM model for training. Finally, we use the Softmax method to classify
the malware families. The rationale and efficiency of the proposed model are validated through
comparisons with various word embedding techniques and ablation experiments. The
experimental results show that the MalXLNet method excels in malware detection, achieving
higher accuracy than other baseline models and traditional methods and maintaining stable
performance despite variations in software and system environments.
Despite our remarkable research results, some pressing issues remain:

1. The interpretability of the proposed models could be more straightforward, posing a
significant challenge in deep learning. Future research should prioritize enhancing model
interpretability and exploring methods to improve transparency and comprehensibility.

2. The extended training time challenges efficiency in practical applications. Therefore,
future research should focus on developing lightweight models that reduce computational
overhead while maintaining high accuracy.

3. Further research is needed to validate the model's robustness across different
environments, thereby improving its generalization capabilities for practical use.

References
[1] D. Gibert, C. Mateu, and J. Planes, “The rise of machine learning for detection and classification

of malware: Research developments, trends and challenges,” Journal of Network and Computer
Applications, vol.153, Mar. 2020. Article (CrossRef Link)

[2] A. A. Al-Hashmi, F. A. Ghaleb, A. Al-Marghilani, A. E. Yahya, S. A. Ebad, M. Saqib, and A. A.
Darem, “Deep-Ensemble and Multifaceted Behavioral Malware Variant Detection Model,” IEEE
Access, vol.10, pp.42762-42777, Apr. 2022. Article (CrossRef Link)

[3] Malware Statistics and Trends Report, AV-TEST, Magdeburg, Germany, Mar. 4, 2024. [Online].
Available: https://portal.av-atlas.org/malware/statistics

[4] 2024 SonicWall Network Threat Report, SonicWall, Silicon Valley, California, USA, Jul. 25, 2024.
[Oline]. Available: https://www.sonicwall.com/zh-cn/threat-report

[5] Kaspersky Security Bulletion 2023, Kaspersky, Moscow, Russia, Nov. 2023.
Article (CrossRef Link)

[6] D. Ucci, L. Aniello, and R. Baldoni, “Survey of machine learning techniques for malware analysis,”
Computers & Security, vol.81, pp.123-147, Mar. 2019. Article (CrossRef Link)

[7] F. O. Catak, A. F. Yazi, O. Elezaj, and J. Ahmed, “Deep learning based Sequential model for
malware analysis using Windows exe API Calls,” PeerJ Computer Science, vol.6, Jul. 2020.
Article (CrossRef Link)

[8] Z. Zhang, P. Qi, and W. Wang, “Dynamic Malware Analysis with Feature Engineering and Feature
Learning,” in Proc. of the AAAI Conference on Artificial Intelligence, vol.34, no.01, pp.1210-1217,
Apr. 2020. Article (CrossRef Link)

[9] E. Amer, I. Zelinka, “A dynamic Windows malware detection and prediction method based on
contextual understanding of API call sequence,” Computers & Security, vol.92, May. 2020.
Article (CrossRef Link)

[10] G. Munjal, B. Paul, and M. Kumar, “Application of Artificial Intelligence in Cybersecurity,”
Improving Security, Privacy, and Trust in Cloud Computing, pp.127-146, 2024.
Article (CrossRef Link)

https://doi.org/10.1016/j.jnca.2019.102526
https://doi.org/10.1109/ACCESS.2022.3168794
https://portal.av-atlas.org/malware/statistics
https://blogs.blackberry.com/en/2023/05/new-malware-born-every-minute
https://blogs.blackberry.com/en/2023/05/new-malware-born-every-minute
https://www.sonicwall.com/zh-cn/threat-report
https://blogs.blackberry.com/en/2023/05/new-malware-born-every-minute
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/11/28102415/KSB_statistics_2023_en.pdf
https://doi.org/10.1016/j.cose.2018.11.001
https://doi.org/10.7717/peerj-cs.285
https://doi.org/10.1609/aaai.v34i01.5474
https://doi.org/10.1016/j.cose.2020.101760
https://doi.org/10.4018/979-8-3693-1431-9.ch006

3082 Xuedong Mao et al.: MalEXLNet:A semantic analysis and detection method of
malware API sequence based on EXLNet model

[11] U. Tayyab, F. B. Khan, M. H. Durad, A. Khan, and Y. S. Lee, “A Survey of the Recent Trends in
Deep Learning Based Malware Detection,” Journal of Cybersecurity and Privacy, vol.2, no.4,
pp.800-829, 2022. Article (CrossRef Link)

[12] W. Qiang, L. Yang, and H. Jin, “Efficient and Robust Malware Detection Based on Control Flow
Traces Using Deep Neural Networks,” Computers & Security, vol.122, Nov. 2022.
Article (CrossRef Link)

[13] I. Rosenberg, A. Shabtai, Y. Elovici, and L. Rokach, “Query-Efficient Black-Box Attack Against
Sequence-Based Malware Classifiers,” in Proc. of ACSAC '20: Proceedings of the 36th Annual
Computer Security Applications Conference, pp.611-626, Austin, USA, Dec. 2020.
Article (CrossRef Link)

[14] S. Aggarwal, “Malware Classification using API Call Information and Word Embeddings,”
Master's Projects, Ph.D. dissertation, Department of Computer Science, San Jose State University,
2023. Article (CrossRef Link)

[15] S. Zhang, J. Wu, M. Zhang, and W. Yang, “Dynamic Malware Analysis Based on API Sequence
Semantic Fusion,” Applied Sciences, vol.13, no.11, 2023. Article (CrossRef Link)

[16] Q. Wang, and Q. Qian, “Malicious code classification based on opcode sequences and textCNN
network,” Journal of Information Security and Applications, vol.67, 2022.
Article (CrossRef Link)

[17] J. Kang, S. Jang, S. Li, Y. Jeong, and Y. Sung, “Long short-term memory-based Malware
classification method for information security,” Computers & Electrical Engineering, vol.77,
pp.366-375, 2019. Article (CrossRef Link)

[18] J. Liu, Y. Zhao, Y. Feng, Y. Hu, and X. Ma, “Semalbert: Semantic-based malware detection with
bidirectional encoder representations from transformers,” Journal of Information Security and
Applications, vol.80, 2024. Article (CrossRef Link)

[19] Y. Hua, Y. Du and D. He, “Classifying Packed Malware Represented as Control Flow Graphs
using Deep Graph Convolutional Neural Network,” in Proc. of 2020 International Conference on
Computer Engineering and Application (ICCEA), pp.254-258, 2020. Article (CrossRef Link)

[20] Y. Zhang, S. Yang, L. Xu, X. Li, and D. Zhao, “A Malware Detection Framework Based on
Semantic Information of Behavioral Features,” Applied Sciences, vol.13, no.22, 2023.
Article (CrossRef Link)

[21] D. Zhao, H. Wang, L. Kou, Z. Li, and J. Zhang, “Dynamic Malware Detection Using Parameter-
Augmented Semantic Chain,” Electronics, vol.12, no.24, 2023. Article (CrossRef Link)

[22] P. Maniriho, A. N. Mahmood and M. J. M. Chowdhury, “API-MalDetect: Automated malware
detection framework for windows based on API calls and deep learning techniques,” Journal of
Network and Computer Applications, vol.218, 2023. Article (CrossRef Link)

[23] S. Aggarwal, and F. D. Troia, “Malware Classification Using Dynamically Extracted API Call
Embeddings,” Applied Sciences, vol.14, no.13, 2024. Article (CrossRef Link)

[24] Γιαπαντζής, “XLCNN: pre-trained transformer model for malware detection,” M.S. thesis, 2024.
Article (CrossRef Link)

[25] H. S. Anderson and P. Roth, “EMBER: An Open Dataset for Training Static PE Malware Machine
Learning Models,” arXiv :1804.04637, Apr. 2018. Article (CrossRef Link)

[26] L. Akritidis, and P. Bozanis, “A clustering-based resampling technique with cluster structure
analysis for software defect detection in imbalanced datasets,” Information Sciences, vol.674, Jul.
2024. Article (CrossRef Link)

[27] P. Mahalakshmi, V. Mahalakshmi, E.S. Vinothkumar, B. Senthilkumar, M. Dinesh, and R.
Krishnaprasanna, “A Real-Time Spam Identification Scheme Over Social Networking
Environment Using Deep Learning Principles,” in Proc. of 2023 3rd International Conference on
Mobile Networks and Wireless Communications (ICMNWC), pp.1-6, 2023. Article (CrossRef Link)

[28] R. Han, K. Kim, B. Choi, and Y. Jeong, “A Study on Detection of Malicious Behavior Based on
Host Process Data Using Machine Learning,” Applied Sciences, vol.13, no.7, 2023.
Article (CrossRef Link)

https://doi.org/10.3390/jcp2040041
https://doi.org/10.1016/j.cose.2022.102871
https://doi.org/10.1145/3427228.3427230
https://doi.org/10.31979/etd.398w-b3fs
https://doi.org/10.3390/app13116526
https://doi.org/10.1016/j.jisa.2022.103151
https://doi.org/10.1016/j.compeleceng.2019.06.014
https://doi.org/10.1016/j.jisa.2023.103690
https://doi.org/10.1109/ICCEA50009.2020.00062
https://doi.org/10.3390/app132212528
https://doi.org/10.3390/electronics12244992
https://doi.org/10.1016/j.jnca.2023.103704
https://doi.org/10.3390/app14135731
http://dspace.lib.uom.gr/handle/2159/26452
https://doi.org/10.48550/arXiv.1804.04637
https://doi.org/10.1016/j.ins.2024.120724
https://doi.org/10.1109/ICMNWC60182.2023.10435651
https://doi.org/10.3390/app13074097

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 10, October 2024 3083

[29] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, Q. V. Le, “XLNet: Generalized
Autoregressive Pretraining for Language Understanding,” in Proc. of 33rd Conference on Neural
Information Processing Systems (NeurIPS 2019), Vancouver, Canada, 2019.
Article (CrossRef Link)

[30] M. Ahmed, R. Seraj and S. M. S. Islam, “The k-means Algorithm: A Comprehensive Survey and
Performance Evaluation,” Electronics, vol.9, no.8, Aug. 2020. Article (CrossRef Link)

[31] L. V. Maaten and G. Hinton, “Visualizing Data using t-SNE,” Journal of Machine Learning
Research, vol.9, no.11, pp.2579-2605, Nov. 2008. Article (CrossRef Link)

[32] T. Kudo and J. Richardson, “Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing,” arXiv:1808.06226, Aug. 2018.
Article (CrossRef Link)

[33] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le and R. Salakhutdinov, “Transformer-XL:
Attentive Language Models Beyond a Fixed-Length Context,” arXiv:1901.02860, Jun. 2019.
Article (CrossRef Link)

Xuedong Mao Born in Yingkou, Liaoning Province in 2000, he received his bachelor's
degree in Communication Engineering from Shenyang Ligong University in Shenyang,
China in 2022. He is pursuing a master's degree in Communication Engineering at the School
of Information Science and Engineering at Shenyang Ligong University in Shenyang, China.
During the study period, he won the first-class scholarship and won awards in many
competitions. His research interests include cyberspace security and artificial intelligence.

Yuntao Zhao completed his Ph.D. in Navigation, Guidance, and Control from the Nanjing
University of Science and Technology. He is currently a professor and doctoral supervisor at
the School of Information Science and Engineering at Shenyang Ligong University. His main
research areas are Cyberspace Security, Machine Learning, and Deep Learning Algorithms.

Yongxin Feng received an M.S. in computer science from Northeastern University in 2000
and a Ph.D. in computer science and technology from the School of Information Science and
Engineering, Northeastern University, in 2003. She is currently a Professor at Shenyang
Ligong University. She has authored over 60 papers in related international conferences and
journals. Her research interests include network management, wireless sensor networks, and
communication and information systems. She received the ICINIS 2011 Best Paper Awards
and 15 Science and Technology Awards, including the National Science and Technology
Progress Award and the Youth Science and Technology Awards from the China Ordnance
Society.

Yutao Hu received his B.S. and M.S. degree in computer science and technology from the
Shenyang University of Technology and the Shenyang Ligong University. He is currently
working toward the Ph.D degree from the Shenyang Ligong Unviersity, Shenyang, China.His
Ph.D. major research is the direction of cyber security, sensor networks and communication
and information systems.

https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://doi.org/10.3390/electronics9081295
https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf?fbcl
https://doi.org/10.48550/arXiv.1808.06226
https://doi.org/10.48550/arXiv.1901.02860

