DOI QR코드

DOI QR Code

Evaluating the bond strength of FRP in concrete samples using machine learning methods

  • Gao, Juncheng (China Vanke Co., Ltd.) ;
  • Koopialipoor, Mohammadreza (Faculty of Civil and Environmental Engineering, Amirkabir University of Technology) ;
  • Armaghani, Danial Jahed (Institute of Research and Development, Duy Tan University) ;
  • Ghabussi, Aria (Department of Civil Engineering, Central Tehran Branch, Islamic Azad University) ;
  • Baharom, Shahrizan (Department of Civil and Architectural Engineering, Eyvanekey University) ;
  • Morasaei, Armin (Department of Civil Engineeing, K.N. Toosi University of Technology) ;
  • Shariati, Ali (Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University) ;
  • Khorami, Majid (Facultad de Arquitectura y Urbanismo, Universidad UTE) ;
  • Zhou, Jian (School of Resources and Safety Engineering, Central South University)
  • Received : 2019.08.17
  • Accepted : 2020.03.05
  • Published : 2020.10.25

Abstract

In recent years, the use of Fiber Reinforced Polymers (FRPs) as one of the most common ways to increase the strength of concrete samples, has been introduced. Evaluation of the final strength of these specimens is performed with different experimental methods. In this research, due to the variety of models, the low accuracy and impact of different parameters, the use of new intelligence methods is considered. Therefore, using artificial intelligent-based models, a new solution for evaluating the bond strength of FRP is presented in this paper. 150 experimental samples were collected from previous studies, and then two new hybrid models of Imperialist Competitive Algorithm (ICA)-Artificial Neural Network (ANN) and Artificial Bee Colony (ABC)-ANN were developed. These models were evaluated using different performance indices and then, a comparison was made between the developed models. The results showed that the ICA-ANN model's ability to predict the bond strength of FRP is higher than the ABC-ANN model. Finally, to demonstrate the capabilities of this new model, a comparison was made between the five experimental models and the results were presented for all data. This comparison showed that the new model could offer better performance. It is concluded that the proposed hybrid models can be utilized in the field of this study as a suitable substitute for empirical models.

Keywords

References

  1. Abdalla, J.A., Elsanosi, A. and Abdelwahab, A. (2007), "Modeling and simulation of shear resistance of R/C beams using artificial neural network", J. Franklin Inst., 344(5), 741-756. https://doi.org/10.1016/j.jfranklin.2005.12.005.
  2. Afshar, A., Jahandari, S., Rasekh, H., Shariati, M., Afshar, A. and Shokrgozar, A. (2020), "Corrosion resistance evaluation of rebars with various primers and coatings in concrete modified with different additives", Constr. Build. Mater., 262, 120034. https://doi.org/10.1016/j.conbuildmat.2020.120034.
  3. Arabnejad Khanouki, M.M., Ramli Sulong, N.H. and Shariati, M. (2010), "Investigation of seismic behaviour of composite structures with concrete filled square steel tubular (CFSST) column by push-over and time-history analyses", Proceedings of the 4th International Conference on Steel & Composite Structures, Sydney, Australia, July.
  4. Arabnejad Khanouki, M.M., Ramli Sulong, N.H. and Shariati, M. (2011), "Behavior of through beam connections composed of CFSST columns and steel beams by finite element studying", Adv. Mater. Res., 168, 2329-2333. http://dx.doi.org/10.4028/www.scientific.net/AMR.168-170.2329.
  5. Armaghani, D.J., Hasanipanah, M., Amnieh, H.B. and Mohamad, E.T. (2018), "Feasibility of ICA in approximating ground vibration resulting from mine blasting", Neural Comput. Appl., 29(9), 457-465. https://doi.org/10.1007/s00521-016-2577-0.
  6. Armaghani, D.J., Koopialipoor, M., Marto, A. and Yagiz, S. (2019), "Application of several optimization techniques for estimating TBM advance rate in granitic rocks", J. Rock Mech. Geotech. Eng., 11(4), 779-789. https://doi.org/10.1016/j.jrmge.2019.01.002.
  7. Armaghani, D.J., Mirzaei, F., Shariati, M., Trung, N.T., Shariati, M. and Trnavac, D. (2020), "Hybrid ANN-based techniques in predicting cohesion of sandy-soil combined with fiber", Geomech. Eng., Int. J., 20(3), 191-205. https://doi.org/10.12989/gae.2020.20.3.191.
  8. Atashpaz-Gargari, E. and Lucas, C. (2007), "Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition", Proceedings of 2007 IEEE Congress on Evolutionary Computation, Piscataway, Singapore, September.
  9. Brosens, K. (1997), "Anchoring stress between concrete and carbon fiber reinforced laminates", Proceedings of the Non-Metallic (FRP) Reinforcement for Concrete Structures: Third International Symposium, Sapporo, Japan, October.
  10. Cai, M., Koopialipoor, M., Armaghani, D.J. and Thai Pham, B. (2020), "Evaluating slope deformation of earth dams due to earthquake shaking using MARS and GMDH techniques", Appl. Sci., 10(4), 1486. https://doi.org/10.3390/app10041486.
  11. Chajes, M.J., Finch, W.W. and Thomson, T.A. (1996), "Bond and force transfer of composite-material plates bonded to concrete", Struct. J., 93(2), 209-217.
  12. Chen, J.F. and Teng, J. (2001), "Anchorage strength models for FRP and steel plates bonded to concrete", J. Struct. Eng., 127(7), 784-791. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(784).
  13. Chen, C., Shi, L., Shariati, M., Toghroli, A., Mohamad, E.T., Bui, D.T. and Khorami, M. (2019), "Behavior of steel storage pallet racking connection-A review", Steel Compos. Struct., Int. J., 30(5), 457-469. https://doi.org/10.12989/scs.2019.30.5.457.
  14. Cladera, A. and Mari, A. (2004), "Shear design procedure for reinforced normal and high-strength concrete beams using artificial neural networks. Part I: Beams without stirrups", Eng. Struct., 26(7), 917-926. https://doi.org/10.1016/j.engstruct.2004.02.010.
  15. Dai, J., Ueda, T. and Sato, Y. (2005), "Development of the nonlinear bond stress-slip model of fiber reinforced plastics sheet-concrete interfaces with a simple method", J. Compos. Constr. 9(1), 52-62. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:1(52).
  16. Daie, M., Jalali, A., Suhatril, M., Shariati, M., Arabnejad Khanouki, M.M., Shariati, A. and Kazemi-Arbat, P. (2011), "A new finite element investigation on pre-bent steel strips as damper for vibration control", Int. J. Phys. Sci. 6(36), 8044-8050. https://doi.org/10.5897/ijps11.1585.
  17. Davoodnabi, S.M., Mirhosseini, S.M. and Shariati, M. (2019), "Behavior of steel-concrete composite beam using angle shear connectors at fire condition", Steel Compos. Struct., Int. J., 30(2), 141-147. https://doi.org/10.12989/scs.2019.30.2.141.
  18. Du Beton, F.I. (2001), "Externally bonded FRP reinforcement for RC structures", Bulletin, 14, 138.
  19. Feng, M.Q., Kim, J.M. and Xue, H. (1998), "Identification of a dynamic system using ambient vibration measurements", J. Appl. Mech., 65(4), 1010-1021. https://doi.org/10.1115/1.2791895.
  20. Ghaleini, E.N., Koopialipoor, M., Momenzadeh, M., Sarafraz, M. E., Mohamad, E.T. and Gordan, B. (2019), "A combination of artificial bee colony and neural network for approximating the safety factor of retaining walls", Eng. Comput., 35(2), 647-658. https://doi.org/10.1007/s00366-018-0625-3.
  21. Gordan, B., Koopialipoor, M., Clementking, A., Tootoonchi, H. and Mohamad, E.T. (2019), "Estimating and optimizing safety factors of retaining wall through neural network and bee colony techniques", Eng. Comput., 35(3), 945-954. https://doi.org/10.1007/s00366-018-0642-2.
  22. Guo, H., Zhou, J., Koopialipoor, M., Armaghani, D.J. and Tahir, M. (2019), "Deep neural network and whale optimization algorithm to assess flyrock induced by blasting", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-019-00816-y.
  23. Hebb, D.O. (1955), "Drives and the CNS (conceptual nervous system)", Psychol. Rev., 62(4), 243-243. https://doi.org/10.1037/h0041823.
  24. Holzenkämpfer, P. (1994), "Ingenieurmodelle des Verbunds geklebter Bewehrung für Betonbauteile", Ph.D. Dissertation, Technische University of Braunschweig, Braunschweig, Germany.
  25. Hosseinpour, E., Baharom, S., Badaruzzaman, W.H.W., Shariati, M. and Jalali, A. (2018), "Direct shear behavior of concrete filled hollow steel tube shear connector for slim-floor steel beams", Steel Compos. Struct., Int. J., 26(4), 485-499. https://doi.org/10.12989/scs.2018.26.4.485.
  26. Huang, L., Asteris, P.G., Koopialipoor, M., Armaghani, D.J. and Tahir, M. (2019), "Invasive weed optimization technique-based ANN to the prediction of rock tensile strength", Appl. Sci., 9(24), 5372. https://doi.org/10.3390/app9245372.
  27. Ismail, M., Shariati, M., Abdul Awal, A.S.M., Chiong, C.E., Sadeghipour Chahnasir, E., Porbar, A., Heydari, A. and Khorami, M. (2018), "Strengthening of bolted shear joints in industrialized ferrocement construction", Steel Compos. Struct., Int. J., 28(6), 681-690. https://doi.org/10.12989/scs.2018.28.6.681.
  28. Jalali, A., Daie, M., Nazhadan, S.V.M., Kazemi-Arbat, P. and Shariati, M. (2012), "Seismic performance of structures with pre-bent strips as a damper", Int. J. Phys. Sci., 7(26), 4061-4072. https://doi.org/10.5897/IJPS11.1324.
  29. Jeon, J. (2007), "Fuzzy and neural network models for analyses of piles", Ph.D. Dissertation, North Carolina State University, North Carolina, U.S.A.
  30. Karaboga, D. (2005), "An idea based on honey bee swarm for numerical optimization", Technical report tr06, Erciyes University, Turkey.
  31. Katebi, J., Shoaei-parchin, M., Shariati, M., Trung, N.T. and Khorami, M. (2019), "Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures", Eng. Comput., 2019, 1-20. https://doi.org/10.1007/s00366-019-00780-7.
  32. Khorami, M., Khorami, M., Motahar, H., Alvansazyazdi, M., Shariati, M., Jalali, A. and Tahir, M.M. (2017), "Evaluation of the seismic performance of special moment frames using incremental nonlinear dynamic analysis", Struct. Eng. Mech., Int. J., 63(2), 259-268. https://doi.org/10.12989/sem.2017.63.2.259.
  33. Khorramian, K., Maleki, S., Shariati, M. and Ramli Sulong, N.H. (2016), "Behavior of tilted angle shear connectors", PloS One, 10(12), 0144288. https://doi.org/10.1371/journal.pone.0144288.
  34. Khorramian, K., Maleki, S., Shariati, M., Jalali, A. and Tahir, M. (2017), "Numerical analysis of tilted angle shear connectors in steel-concrete composite systems", Steel Compos. Struct., Int. J., 23(1), 67-85. https://doi.org/10.12989/scs.2017.23.1.067.
  35. Koopialipoor, M., Armaghani, D.J., Haghighi, M. and Ghaleini, E. N. (2019a), "A neuro-genetic predictive model to approximate overbreak induced by drilling and blasting operation in tunnels", Bull. Eng. Geol. Environ., 78(2), 981-990. https://doi.org/10.1007/s10064-017-1116-2.
  36. Koopialipoor, M., Armaghani, D.J., Hedayat, A., Marto, A. and Gordan, B. (2019b), "Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions", Soft Comput., 23(14), 5913-5929. https://doi.org/10.1007/s00500-018-3253-3.
  37. Koopialipoor, M., Fallah, A., Armaghani, D.J., Azizi, A. and Mohamad, E.T. (2019c), "Three hybrid intelligent models in estimating flyrock distance resulting from blasting", Eng. Comput., 35(1), 243-256. https://doi.org/10.1007/s00366-018-0596-4.
  38. Koopialipoor, M., Ghaleini, E.N., Haghighi, M., Kanagarajan, S., Maarefvand, P. and Mohamad, E.T. (2019d), "Overbreak prediction and optimization in tunnel using neural network and bee colony techniques", Eng. Comput., 35(4), 1191-1202. https://doi.org/10.1007/s00366-018-0658-7.
  39. Koopialipoor, M., Ghaleini, E.N., Tootoonchi, H., Armaghani, D. J., Haghighi, M. and Hedayat, A. (2019e), "Developing a new intelligent technique to predict overbreak in tunnels using an artificial bee colony-based ANN", Environ. Earth Sci., 78(5), 165. https://doi.org/10.1007/s12665-019-8163-x.
  40. Koopialipoor, M., Nikouei, S.S., Marto, A., Fahimifar, A., Armaghani, D.J. and Mohamad, E.T. (2019f), "Predicting tunnel boring machine performance through a new model based on the group method of data handling", Bull. Eng. Geol. Environ., 78(5), 3799-3813. https://doi.org/10.1007/s10064-018-1349-8.
  41. Koopialipoor, M., Noorbakhsh, A., Noroozi Ghaleini, E., Jahed Armaghani, D. and Yagiz, S. (2019g), "A new approach for estimation of rock brittleness based on non-destructive tests", Nondestruct. Test. Evaluation, 34(4), 354-375. https://doi.org/10.1080/10589759.2019.1623214.
  42. Koopialipoor, M., Tootoonchi, H., Armaghani, D.J., Mohamad, E.T. and Hedayat, A. (2019h), "Application of deep neural networks in predicting the penetration rate of tunnel boring machines", Bull. Eng. Geol. Environ., 78(8), 6347-6360. https://doi.org/10.1007/s10064-019-01538-7.
  43. Koopialipoor, M., Fahimifar, A., Ghaleini, E.N., Momenzadeh, M. and Armaghani, D.J. (2020a), "Development of a new hybrid ANN for solving a geotechnical problem related to tunnel boring machine performance", Eng. Comput., 36(1), 345-357. https://doi.org/10.1007/s00366-019-00701-8.
  44. Koopialipoor, M., Murlidhar, B.R., Hedayat, A., Armaghani, D.J., Gordan, B. and Mohamad, E.T. (2020b), "The use of new intelligent techniques in designing retaining walls", Eng. Comput., 36(1), 283-294. https://doi.org/10.1007/s00366-018-00700-1.
  45. Li, D., Toghroli, A., Shariati, M., Sajedi, F., Bui, D.T., Kianmehr, P., Mohamad, E.T. and Khorami, M. (2019), "Application of polymer, silica-fume and crushed rubber in the production of Pervious concrete", Smart Struct. Syst., Int. J., 23(2), 207-214. https://doi.org/10.12989/sss.2019.23.2.207.
  46. Liao, X., Khandelwal, M., Yang, H., Koopialipoor, M. and Murlidhar, B.R. (2019), "Effects of a proper feature selection on prediction and optimization of drilling rate using intelligent techniques", Eng. Comput., 36(2), 499-510. https://doi.org/10.1007/s00366-019-00711-6.
  47. Lu, X., Teng, J., Ye, L. and Jiang, J. (2005), "Bond-slip models for FRP sheets/plates bonded to concrete", Eng. Struct., 27(6), 920-937. https://doi.org/10.1016/j.engstruct.2005.01.014.
  48. Luo, Z., Sinaei, H., Ibrahim, Z., Shariati, M., Jumaat, Z., Wakil, K., Pham, B.T., Mohamad, E.T. and Khorami, M. (2019), "Computational and experimental analysis of beam to column joints reinforced with CFRP plates", Steel Compos. Struct., Int. J., 30(3), 271-280. http://dx.doi.org/10.12989/scs.2019.30.3.271.
  49. Mahdiyar, A., Jahed Armaghani, D., Koopialipoor, M., Hedayat, A., Abdullah, A. and Yahya, K. (2020), "Practical risk assessment of ground vibrations resulting from blasting, using gene expression programming and Monte Carlo simulation techniques", Appl. Sci., 10(2), 472. https://doi.org/10.3390/app10020472.
  50. Mansouri, I., Shariati, M., Safa, M., Ibrahim, Z., Tahir, M. and Petkovic, D. (2019), "Analysis of influential factors for predicting the shear strength of a V-shaped angle shear connector in composite beams using an adaptive neuro-fuzzy technique", J. Intell. Manuf., 30(3), 1247-1257. https://doi.org/10.1007/s10845-017-1306-6.
  51. McCulloch, W.S. and Pitts, W. (1943), "A logical calculus of the ideas immanent in nervous activity", Bull. Math. Biophys. 5(4), 115-133. https://doi.org/10.1007/BF02478259.
  52. Milovancevic, M., Marinovic, J.S., Nikolic, J., Kitic, A., Shariati, M., Trung, N.T., Wakil, K. and Khorami, M. (2019), "UML diagrams for dynamical monitoring of rail vehicles", Physica A, 531, 121169. https://doi.org/10.1016/j.physa.2019.121169.
  53. Mohamad, E.T., Koopialipoor, M., Murlidhar, B.R., Rashiddel, A., Hedayat, A. and Armaghani, D.J. (2019), "A new hybrid method for predicting ripping production in different weathering zones through in situ tests", Measurement, 147, 106826. https://doi.org/10.1016/j.measurement.2019.07.054.
  54. Mohammadhassani, M., Akib, S., Shariati, M., Suhatril, M. and Arabnejad Khanouki, M.M. (2014a), "An experimental study on the failure modes of high strength concrete beams with particular references to variation of the tensile reinforcement ratio", Eng. Fail. Anal., 41, 73-80. https://doi.org/10.1016/j.engfailanal.2013.08.014.
  55. Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Shariati, M. (2014b), "An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups", Smart Struct. Syst. Int. J., 14(5), 785-809. http://dx.doi.org/10.12989/sss.2014.14.5.785.
  56. Mukherjee, A., Deshpande, J. and Anmala, J. (1996), "Prediction of buckling load of columns using artificial neural networks", J. Struct. Eng., 122(11), 1385-1387. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:11(1385).
  57. Naghipour, M., Yousofizinsaz, G. and Shariati, M. (2020), "Experimental study on axial compressive behavior of welded built-up CFT stub columns made by cold-formed sections with different welding lines", Steel Compos. Struct., Int. J., 34(3), 347-359. https://doi.org/10.12989/scs.2020.34.3.347.
  58. Nasrollahi, S., Maleki, S., Shariati, M., Marto, A. and Khorami, M. (2018), "Investigation of pipe shear connectors using push out test", Steel Compos. Struct., Int. J., 27(5), 537-543. http://dx.doi.org/10.12989/scs.2018.27.5.537.
  59. Nehdi, M., Djebbar, Y. and Khan, A. (2001), "Neural network model for preformed-foam cellular concrete", Mater. J., 98(5), 402-409.
  60. Neubauer, U. and Rostasy, F. (1997), "Design aspects of concrete structures strengthened with externally bonded CFRP-plates", Proceedings of the 7th International Conference on Structural Faults and Repair, Edinburgh, UK, July.
  61. Nosrati, A., Zandi, Y., Shariati, M., Khademi, K., Darvishnezhad Aliabad, M., Marto, A., Mu'azu, M., Ghanbari, E., Mandizadeh, M.B. and Shariati, A. (2018), "Portland cement structure and its major oxides and fineness", Smart Struct. Syst., Int. J., 22(4), 425-432. https://doi.org/10.12989/sss.2018.22.4.425.
  62. Oehlers, D. and Seracino, R. (2004), Design of FRP and Steel Plated RC Structures: Retrofitting Beams and Slabs for Strength, Stiffness and Ductility, Elsevier, UK.
  63. Paknahad, M., Shariati, M., Sedghi, Y., Bazzaz, M. and Khorami, M. (2018), "Shear capacity equation for channel shear connectors in steel-concrete composite beams", Steel Compos. Struct., Int. J., 28(4), 483-494. https://doi.org/10.12989/10.12989/scs.2018.28.4.483.
  64. Rafiq, M., Bugmann, G. and Easterbrook, D. (2001), "Neural network design for engineering applications", Comput. Struct., 79(17), 1541-1552. https://doi.org/10.1016/S0045-7949(01)00039-6.
  65. Safa, M., Sari, P.A., Shariati, M., Suhatril, M., Trung, N.T., Wakil, K. and Khorami, M. (2020), "Development of neuro-fuzzy and neuro-bee predictive models for prediction of the safety factor of eco-protection slopes", Physica A, 550, 124046. https://doi.org/10.1016/j.physa.2019.124046.
  66. Sajedi, F. and Shariati, M. (2019), "Behavior study of NC and HSC RCCs confined by GRP casing and CFRP wrapping", Steel Compos. Struct., Int. J., 30(5), 417-432. https://doi.org/10.12989/scs.2019.30.5.417.
  67. Shah, S., Ramli Sulong, N.H., Shariati, M. and Jumaat, M.Z. (2015), "Steel rack connections: Identification of most influential factors and a comparison of stiffness design methods", PloS One, 10(10), e0139422. https://doi.org/10.1371/journal.pone.0139422.
  68. Shah, S., Ramli Sulong, N.H., Shariati, M., Khan, R. and Jumaat, M. (2016), "Behavior of steel pallet rack beam-to-column connections at elevated temperatures", Thin-Wall. Struct., 106, 471-483. https://doi.org/10.1016/j.tws.2016.05.021.
  69. Shahabi, S., Ramli Sulong, N.H., Shariati, M., Mohammadhassani, M. and Shah, S. (2016a), "Numerical analysis of channel connectors under fire and a comparison of performance with different types of shear connectors subjected to fire", Steel Compos. Struct., Int. J., 20(3), 651-669. https://doi.org/10.12989/scs.2016.20.3.651.
  70. Shahabi, S., Ramli Sulong, N.H., Shariati, M. and Shah, S. (2016b), "Performance of shear connectors at elevated temperatures-A review", Steel Compos. Struct., Int. J., 20(1), 185-203. https://doi.org/10.12989/scs.2016.20.1.185.
  71. Shariat, M., Shariati, M., Madadi, A. and Wakil, K. (2018), "Computational lagrangian multiplier method by using for optimization and sensitivity analysis of rectangular reinforced concrete beams", Steel Compos. Struct., Int. J., 29(2), 243-256. https://doi.org/10.12989/scs.2018.29.2.243.
  72. Shariati, A., Ramli Sulong, N.H., Suhatril, M. and Shariati, M. (2012a), "Investigation of channel shear connectors for composite concrete and steel T-beam", Int. J. Phys. Sci., 7(11), 1828-1831. https://doi.org/10.5897/IJPS11.1604.
  73. Shariati, M. (2008), "Assessment building using none-destructive test techniques (ultra sonic pulse velocity and schmidt rebound hammer)", Ph.D. Dissertation, Universiti Putra Malaysia, Putra, Malyasia.
  74. Shariati, M., Ramli Sulong, N.H., Arabnejad Khanouki, M.M. and Shariati, A. (2011), "Experimental and numerical investigations of channel shear connectors in high strength concrete", Proceedings of the 2011 World Congress on Advances in Structural Engineering and Mechanics, Seoul, Korea, September.
  75. Shariati, M., Ramli Sulong, N.H., Suhatril, M., Shariati, A., Arabnejad Khanouki, M.M. and Sinaei, H. (2012b), "Fatigue energy dissipation and failure analysis of channel shear connector embedded in the lightweight aggregate concrete in composite bridge girders", Proceedings of the Fifth International Conference on Engineering Failure Analysis, The Hague, The Netherlands, July.
  76. Shariati, M. (2013), "Behaviour of C-shaped shear connectors in stell concrete composite beams", Ph.D. Dissertation, Universiti Malaya, Kuala Lumpur, Malyasia.
  77. Shariati, M., Toghroli, A., Jalali, A. and Ibrahim, Z. (2017), "Assessment of stiffened angle shear connector under monotonic and fully reversed cyclic loading", Proceedings of the Fifth International Conference on Advances in Civil, Structural and Mechanical Engineering-CSM 2017, Zurich, Switzerland, September.
  78. Shariati, M., Tahir, M.M., Wee, T.C., Shah, S., Jalali, A., Abdullahi, M.M. and Khorami, M. (2018), "Experimental investigations on monotonic and cyclic behavior of steel pallet rack connections", Eng. Fail. Anal., 85, 149-166. https://doi.org/10.1016/j.engfailanal.2017.08.014.
  79. Shariati, M., Faegh, S.S., Mehrabi, P., Bahavarnia, S., Zandi, Y., Masoom, D.R., Toghroli, A., Trung, N.T. and Salih, M.N. (2019a), "Numerical study on the structural performance of corrugated low yield point steel plate shear walls with circular openings", Steel Compos. Struct., Int. J., 33(4), 569-581. https://doi.org/10.12989/scs.2019.33.4.569.
  80. Shariati, M., Heyrati, A., Zandi, Y., Laka, H., Toghroli, A., Kianmehr, P., Safa, M., Salih, M.N. and Poi-Ngian, S. (2019b), "Application of waste tire rubber aggregate in porous concrete", Smart Struct. Syst., Int. J., 24(4), 553-566. https://doi.org/10.12989/sss.2019.24.4.553.
  81. Shariati, M., Mafipour, M.S., Mehrabi, P., Bahadori, A., Zandi, Y., Salih, M.N., Nguyen, H., Dou, J., Song, X. and Poi-Ngian, S. (2019c), "Application of a hybrid artificial neural networkparticle swarm optimization (ANN-PSO) model in behavior prediction of channel shear connectors embedded in normal and high-strength concrete", Appl. Sci., 9(24), 5534. https://doi.org/10.3390/app9245534.
  82. Shariati, M., Mafipour, M.S., Mehrabi, P., Zandi, Y., Dehghani, D., Bahadori, A., Shariati, A., Trung, N.T., Salih, M.N. and Poi-Ngian, S. (2019d), "Application of extreme learning machine (ELM) and genetic programming (GP) to design steel-concrete composite floor systems at elevated temperatures", Steel Compos. Struct., Int. J., 33(3), 319-332. https://doi.org/10.12989/scs.2019.33.3.319.
  83. Shariati, M., Rafiei, S., Zandi, Y., Fooladvand, R., Gharehaghaj, B., Shariat, A., Trung, N.T., Salih, M.N., Mehrabi, P. and Poi-Ngian, S. (2019e), "Experimental investigation on the effect of cementitious materials on fresh and mechanical properties of self-consolidating concrete", Adv. Concr. Constr., Int. J., 8(3), 225-237. https://doi.org/10.12989/acc.2019.8.3.225.
  84. Shariati, M., Trung, N.T., Wakil, K., Mehrabi, P., Safa, M. and Khorami, M. (2019f), "Moment-rotation estimation of steel rack connection using extreme learning machine", Steel Compos. Struct., Int. J., 31(5), 427-435. https://doi.org/10.12989/scs.2019.31.5.427.
  85. Shariati, M., Mafipour, M.S., Mehrabi, P., Shariati, A., Toghroli, A., Trung, N.T. and Salih, M.N. (2020), "A novel approach to predict shear strength of tilted angle connectors using artificial intelligence techniques", Eng. Comput., 1-21. https://doi.org/10.1007/s00366-019-00930-x.
  86. Shariati, M., Ghorbani, M., Naghipour, M., Alinejad, N. and Toghroli, A. (2020a), "The effect of RBS connection on energy absorption in tall buildings with braced tube frame system", Steel Compos. Struct., Int. J., 34(3), 393-407. https://doi.org/10.12989/scs.2020.34.3.393.
  87. Shariati, M., Mafipour, M.S., Ghahremani, B., Azarhomayun, F., Ahmadi, M., Trung, N.T. and Shariati, A. (2020b), "A novel hybrid extreme learning machine-grey wolf optimizer (ELMGWO) model to predict compressive strength of concrete with partial replacements for cement", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01081-0.
  88. Shariati, M., Mafipour, M.S., Haido, J.H., Yousif, S.T., Toghroli, A., Trung, N.T. and Shariati, A. (2020c), "Identification of the most influencing parameters on the properties of corroded concrete beams using an adaptive neuro-fuzzy inference system (ANFIS)", Steel Compos. Struct., Int. J., 34(1), 155-170. https://doi.org/10.12989/scs.2020.34.1.155.
  89. Shariati, M., Mafipour, M.S., Mehrabi, P., Ahmadi, M., Wakil, K., Trung, N.T. and Toghroli, A. (2020d), "Prediction of concrete strength in presence of furnace slag and fly ash using hybrid ANN-GA (artificial neural network-genetic algorithm)", Smart Struct. Syst., Int. J., 25(2), 183-195. https://doi.org/10.12989/sss.2020.25.2.183.
  90. Shariati, M., Naghipour, M., Yousofizinsaz, G., Toghroli, A. and Tabarestani, N.P. (2020e), "Numerical study on the axial compressive behavior of built-up CFT columns considering different welding lines", Steel Compos. Struct., Int. J., 34(3), 377-391. https://doi.org/10.12989/scs.2020.34.3.377.
  91. Sharma, S., Ali, M.M., Goldar, D. and Sikdar, P. (2006), "Plate-concrete interfacial bond strength of FRP and metallic plated concrete specimens", Compos. Part B Eng., 37(1), 54-63. https://doi.org/10.1016/j.compositesb.2005.05.011.
  92. Sinaei, H., Jumaat, M.Z. and Shariati, M. (2011), "Numerical investigation on exterior reinforced concrete beam-column joint strengthened by composite fiber reinforced polymer (CFRP)", Int. J. Phys. Sci., 6(28), 6572-6579. https://doi.org/10.5897/IJPS11.1225.
  93. Soudki, K. and Alkhrdaji, T. (2004), "Guide for the design and construction of externally bonded FRP systems for strengthening existing structures", Proceedings of the Structures Congress 2005, New York, USA, April.
  94. Sun, L., Koopialipoor, M., Armaghani, D.J., Tarinejad, R. and Tahir, M. (2019), "Applying a meta-heuristic algorithm to predict and optimize compressive strength of concrete samples", Eng. Comput., 1-13. https://doi.org/10.1007/s00366-019-00875-1.
  95. Tahmasbi, F., Maleki, S., Shariati, M., Ramli Sulong, N.H. and Tahir, M.M. (2016), "Shear capacity of C-shaped and L-shaped angle shear connectors", PLoS One, 11(8), e0156989. https://doi.org/10.1371/journal.pone.0156989.
  96. Takeo, K., Matsushita, H., Makizumi, T. and Nagashima, G. (1997), "Bond characteristics of CFRP sheets in the CFRP bonding technique", Proc. Japan Concr. Inst., 19(2), 1599-1604.
  97. Tang, D., Gordan, B., Koopialipoor, M., Armaghani, D.J., Tarinejad, R., Pham, B.T. and Huynh, V.V. (2020), "Seepage analysis in short embankments using developing a metaheuristic method based on governing equations", Appl. Sci., 10(5), 1761. https://doi.org/10.3390/app10051761.
  98. Teng, J., Chen, J.F., Smith, S.T. and Lam, L. (2002), FRP: Strengthened RC Structures, SCU, Astralia.
  99. Toghroli, A., Mehrabi, P., Shariati, M., Trung, N.T., Jahandari, S. and Rasekh, H. (2020), "Evaluating the use of recycled concrete aggregate and pozzolanic additives in fiber-reinforced pervious concrete with industrial and recycled fibers", Constr. Build. Mater., 252, 118997. https://doi.org/10.1016/j.conbuildmat.2020.118997.
  100. Toghroli, A., Mohammadhassani, M., Suhatril, M., Shariati, M. and Ibrahim, Z. (2014), "Prediction of shear capacity of channel shear connectors using the ANFIS model", Steel Compos. Struct., Int. J., 17(5), 623-639. http://dx.doi.org/10.12989/scs.2014.17.5.623.
  101. Toghroli, A., Shariati, M., Karim, M.R. and Ibrahim, Z. (2017), "Investigation on composite polymer and silica fume-rubber aggregate pervious concrete", Proceedings of the Fifth International Conference on Advances in Civil, Structural and Mechanical Engineering - CSM 2017, Zurich, Switzerland, September.
  102. Toghroli, A., Shariati, M., Sajedi, F., Ibrahim, Z., Koting, S., Mohamad, E.T. and Khorami, M. (2018a), "A review on pavement porous concrete using recycled waste materials", Smart Struct. Sys., Int. J., 22(4), 433-440. https://doi.org/10.12989/sss.2018.22.4.433.
  103. Toghroli, A., Suhatril, M., Ibrahim, Z., Safa, M., Shariati, M. and Shamshirband, S. (2018b), "Potential of soft computing approach for evaluating the factors affecting the capacity of steel-concrete composite beam", J. Intell. Manuf., 29(8), 1793-1801. https://doi.org/10.1007/s10845-016-1217-y.
  104. Toutanji, H., Saxena, P., Zhao, L. and Ooi, T. (2007), "Prediction of interfacial bond failure of FRP-concrete surface", J. Compos. Constr., 11(4), 427-436. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:4(427).
  105. Trung, N.T., Shahgoli, A.F., Zandi, Y., Shariati, M., Wakil, K., Safa, M. and Khorami, M. (2019a), "Moment-rotation prediction of precast beam-to-column connections using extreme learning machine", Struct. Eng. Mech., Int. J., 70(5), 639-647. https://doi.org/10.12989/sem.2019.70.5.639.
  106. Trung, N.T., Alemi, N., Haido, J.H., Shariati, M., Baradaran, S. and Yousif, S.T. (2019b), "Reduction of cement consumption by producing smart green concretes with natural zeolites", Smart Struct. Syst., Int. J., 24(3), 415-425. https://doi.org/10.12989/sss.2019.24.3.415.
  107. Wei, X., Shariati, M., Zandi, Y., Pei, S., Jin, Z., Gharachurlu, S., Abdullahi, M.M., Tahir, M.M. and Khorami, M. (2018), "Distribution of shear force in perforated shear connectors", Steel Compos. Struct., Int. J., 27(3), 389-399. http://dx.doi.org/10.12989/scs.2018.27.3.389.
  108. Woo, S.K. and Lee, Y. (2010), "Experimental study on interfacial behavior of CFRP-bonded concrete", KSCE J. Civ. Eng., 14(3), 385-393. https://doi.org/10.1007/s12205-010-0385-0.
  109. Wu, Y., Zhou, Z., Yang, Q. and Chen, W. (2010), "On shear bond strength of FRP-concrete structures", Eng. Struct., 32(3), 897-905. https://doi.org/10.1016/j.engstruct.2009.12.017.
  110. Wu, Z. and Yoshizawa, H. (1999), "Analytical/experimental study on composite behavior in strengthening structures with bonded carbon fiber sheets", J. Reinf. Plast. Compos., 18(12), 1131-1155. https://doi.org/10.1177/073168449901801207.
  111. Xie, Q., Sinaei, H., Shariati, M., Khorami, M., Mohamad, E.T. and Bui, D.T. (2019), "An experimental study on the effect of CFRP on behavior of reinforce concrete beam column connections", Steel Compos. Struct., Int. J., 30(5), 433-441. https://doi.org/10.12989/scs.2019.30.5.433.
  112. Xu, C., Gordan, B., Koopialipoor, M., Armaghani, D.J., Tahir, M. and Zhang, X. (2019), "Improving performance of retaining walls under dynamic conditions developing an optimized ANN based on ant colony optimization technique", IEEE Access, 7, 94692-94700. https://doi.org/10.12989/10.1109/ACCESS.2019.2927632.
  113. Yang, H., Koopialipoor, M., Armaghani, D.J., Gordan, B., Khorami, M. and Tahir, M. (2019), "Intelligent design of retaining wall structures under dynamic conditions", Steel Compos. Struct., Int. J., 31(6), 629-640. https://doi.org/10.12989/scs.2019.31.6.629.
  114. Yang, Y., Yue, Q. and Hu, Y. (2001), "Experimental study on bond performance between carbon fiber sheets and concrete", J. Build. Struct., 3, 36-41.
  115. Yao, J., Teng, J. and Chen, J. (2005), "Experimental study on FRPto- concrete bonded joints", Compos. Part B Eng., 36(2), 99-113. https://doi.org/10.1016/j.compositesb.2004.06.001.
  116. Ye, L., Lu, X. and Chen, J. (2005), "Design proposals for the debonding strengths of FRP strengthened RC beams in the Chinese design code", Proceedings of International Symposium on Bond Behaviour of FRP in Structures, Hong Kong, China, December.
  117. Zandi, Y., Shariati, M., Marto, A., Wei, X., Karaca, Z., Dao, D., Toghroli, A., Hashemi, M.H., Sedghi, Y. and Wakil, K. (2018), "Computational investigation of the comparative analysis of cylindrical barns subjected to earthquake", Steel Compos. Struct., Int. J., 28(4), 439-447. https://doi.org/10.12989/scs.2018.28.4.439.
  118. Zhao, H., Zhang, Y. and Zhao, M. (2000), "Research on the bond performance between CFRP plate and concrete", Proceedings of the 1st Conference on FRP Concrete Structures of China, Beijing, China, July.
  119. Zhao, Y., Noorbakhsh, A., Koopialipoor, M., Azizi, A. and Tahir, M. (2019), "A new methodology for optimization and prediction of rate of penetration during drilling operations", Eng. Comput., 36(2), 587-595. https://doi.org/10.1007/s00366-019-00715-2.
  120. Zhou, J., Aghili, N., Ghaleini, E.N., Bui, D.T., Tahir, M. and Koopialipoor, M. (2019a), "A Monte Carlo simulation approach for effective assessment of flyrock based on intelligent system of neural network", Eng. Comput., 36, 713-723. https://doi.org/10.1007/s00366-019-00726-z.
  121. Zhou, J., Koopialipoor, M., Murlidhar, B.R., Fatemi, S.A., Tahir, M., Armaghani, D.J. and Li, C. (2019b), "Use of intelligent methods to design effective pattern parameters of mine blasting to minimize flyrock distance", Nat. Resour. Res., 25, 625-639. https://doi.org/10.1007/s11053-019-09519-z.
  122. Zhou, J., Guo, H., Koopialipoor, M., Armaghani, D.J. and Tahir, M. (2020a), "Investigating the effective parameters on the risk levels of rockburst phenomena by developing a hybrid heuristic algorithm", Eng. Comput., 1-16. https://doi.org/10.1007/s00366-019-00908-9.
  123. Zhou, J., Li, C., Koopialipoor, M., Jahed Armaghani, D. and Thai Pham, B. (2020b), "Development of a new methodology for estimating the amount of PPV in surface mines based on prediction and probabilistic models (GEP-MC)", Int. J. Min., Reclam. Environ., 1-21. https://doi.org/10.1080/17480930.2020.1734151.
  124. Ziaei-Nia, A., Shariati, M. and Salehabadi, E. (2018), "Dynamic mix design optimization of high-performance concrete", Steel Compos. Struct., Int. J., 29(1), 67-75. http://dx.doi.org/10.12989/scs.2018.29.1.067.
  125. Zorlu, K., Gokceoglu, C., Ocakoglu, F., Nefeslioglu, H. and Acikalin, S. (2008), "Prediction of uniaxial compressive strength of sandstones using petrography-based models", Eng. Geol., 96(3-4), 141-158. https://doi.org/10.1016/j.enggeo.2007.10.009.

Cited by

  1. Performance Evaluation of Hybrid WOA-SVR and HHO-SVR Models with Various Kernels to Predict Factor of Safety for Circular Failure Slope vol.11, pp.4, 2020, https://doi.org/10.3390/app11041922